Calculate ff f(x, y, z) d.S for the given surface and function. x² + y² = 25, 0≤z≤4; ƒ(x, y, z) = e¯² Consider the shown work. To = аф де d ¡ (5 cos 0, 5 sin 0, z) = (–5 sin 0, 5 cos 0, 0) де d T₂ = (5 cos 0, 5 sin 0, z) = (0,0,1) dz i N(0, z) = T₁ × T₂ = -5 sin 0 0 ||N(0, z)|| = (5 cos 0)² + (5 sin 0)² + 0 = √/25 (cos² 0 + sin² (0) 2π 2) ds = √²+ √ * • j 5 cos 0 0 = : (5 cos 0)i + (5 sin ¤)j = (5 cos 0, 5 sin 0, 0) 0 [[ f(x, y, z) dS = e² do dz = √25=5
Calculate ff f(x, y, z) d.S for the given surface and function. x² + y² = 25, 0≤z≤4; ƒ(x, y, z) = e¯² Consider the shown work. To = аф де d ¡ (5 cos 0, 5 sin 0, z) = (–5 sin 0, 5 cos 0, 0) де d T₂ = (5 cos 0, 5 sin 0, z) = (0,0,1) dz i N(0, z) = T₁ × T₂ = -5 sin 0 0 ||N(0, z)|| = (5 cos 0)² + (5 sin 0)² + 0 = √/25 (cos² 0 + sin² (0) 2π 2) ds = √²+ √ * • j 5 cos 0 0 = : (5 cos 0)i + (5 sin ¤)j = (5 cos 0, 5 sin 0, 0) 0 [[ f(x, y, z) dS = e² do dz = √25=5
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Calculate ff f(x, y, z) d.S for the given surface and function.
x² + y² = 25, 0≤ z ≤ 4; f(x, y, z) = e¯²
Consider the shown work.
To =
T, =
аф
де
=
д
(5 cos 0, 5 sin 0, z) = (-5 sin 0, 5 cos 0, 0)
do
d
-(5 cos 0, 5 sin 0, z) = (0,0,1)
дz
i
N(0, z) = T₁ × T₂ = -5 sin 0
0
||N(0, z)|| =
5 cos 0
0
2π 4
[[ f(x, y, 2) ds = [²* ["^ e
S
(5 cos 0)² + (5 sin 0)² + 0 =
e² do dz
k
0 = (5 cos 0)i + (5 sin 0)j =
1
Identify the first error in the work shown.
/25 (cos² 0 + sin²0)
The surface integral is written incorrectly.
No errors exist in the work shown.
The parametrization of the cylinder is incorrect.
The normal vector N(0, z) is incorrect.
(5 cos 0, 5 sin 0, 0)
√25 = 5](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F77548912-c51c-4c9d-8b51-f3905a3bec75%2F6d8146cc-48ac-487c-97bf-616301388afd%2F3434i2j_processed.png&w=3840&q=75)
Transcribed Image Text:Calculate ff f(x, y, z) d.S for the given surface and function.
x² + y² = 25, 0≤ z ≤ 4; f(x, y, z) = e¯²
Consider the shown work.
To =
T, =
аф
де
=
д
(5 cos 0, 5 sin 0, z) = (-5 sin 0, 5 cos 0, 0)
do
d
-(5 cos 0, 5 sin 0, z) = (0,0,1)
дz
i
N(0, z) = T₁ × T₂ = -5 sin 0
0
||N(0, z)|| =
5 cos 0
0
2π 4
[[ f(x, y, 2) ds = [²* ["^ e
S
(5 cos 0)² + (5 sin 0)² + 0 =
e² do dz
k
0 = (5 cos 0)i + (5 sin 0)j =
1
Identify the first error in the work shown.
/25 (cos² 0 + sin²0)
The surface integral is written incorrectly.
No errors exist in the work shown.
The parametrization of the cylinder is incorrect.
The normal vector N(0, z) is incorrect.
(5 cos 0, 5 sin 0, 0)
√25 = 5
![Identify the first error in the work shown.
The surface integral is written incorrectly.
No errors exist in the work shown.
The parametrization of the cylinder is incorrect.
The normal vector N(0, z) is incorrect.
The tangent vectors To and T₂ are incorrect.
Calculate ff f(x, y, z) d.S for the given surface and function.
x² + y² =25, 0≤ z ≤ 4; f(x, y, z) = e¯²
(Express numbers in exact form. Use symbolic notation and fractions where needed.)
s f(x, y, z) ds](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F77548912-c51c-4c9d-8b51-f3905a3bec75%2F6d8146cc-48ac-487c-97bf-616301388afd%2F7cnfwr_processed.png&w=3840&q=75)
Transcribed Image Text:Identify the first error in the work shown.
The surface integral is written incorrectly.
No errors exist in the work shown.
The parametrization of the cylinder is incorrect.
The normal vector N(0, z) is incorrect.
The tangent vectors To and T₂ are incorrect.
Calculate ff f(x, y, z) d.S for the given surface and function.
x² + y² =25, 0≤ z ≤ 4; f(x, y, z) = e¯²
(Express numbers in exact form. Use symbolic notation and fractions where needed.)
s f(x, y, z) ds
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)