Calculate ff f(x, y, z) d.S for the given surface and function. x² + y² = 25, 0≤z≤4; ƒ(x, y, z) = e¯² Consider the shown work. To = аф де d ¡ (5 cos 0, 5 sin 0, z) = (–5 sin 0, 5 cos 0, 0) де d T₂ = (5 cos 0, 5 sin 0, z) = (0,0,1) dz i N(0, z) = T₁ × T₂ = -5 sin 0 0 ||N(0, z)|| = (5 cos 0)² + (5 sin 0)² + 0 = √/25 (cos² 0 + sin² (0) 2π 2) ds = √²+ √ * • j 5 cos 0 0 = : (5 cos 0)i + (5 sin ¤)j = (5 cos 0, 5 sin 0, 0) 0 [[ f(x, y, z) dS = e² do dz = √25=5
Calculate ff f(x, y, z) d.S for the given surface and function. x² + y² = 25, 0≤z≤4; ƒ(x, y, z) = e¯² Consider the shown work. To = аф де d ¡ (5 cos 0, 5 sin 0, z) = (–5 sin 0, 5 cos 0, 0) де d T₂ = (5 cos 0, 5 sin 0, z) = (0,0,1) dz i N(0, z) = T₁ × T₂ = -5 sin 0 0 ||N(0, z)|| = (5 cos 0)² + (5 sin 0)² + 0 = √/25 (cos² 0 + sin² (0) 2π 2) ds = √²+ √ * • j 5 cos 0 0 = : (5 cos 0)i + (5 sin ¤)j = (5 cos 0, 5 sin 0, 0) 0 [[ f(x, y, z) dS = e² do dz = √25=5
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,