Calculate each of the following derivatives using only the definition of the derivative. (a) f(x) = x³, f'(2); (b) g(x)=x+2, g'(a) (for arbitrary a € R); (c) h(x) = x² cos(x), g'(0); (d) r(x) = 32±4, h'(1). 2x-1'
Calculate each of the following derivatives using only the definition of the derivative. (a) f(x) = x³, f'(2); (b) g(x)=x+2, g'(a) (for arbitrary a € R); (c) h(x) = x² cos(x), g'(0); (d) r(x) = 32±4, h'(1). 2x-1'
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Calculate each of the following derivatives using only the definition of the derivative.
(a) \( f(x) = x^3 \), \( f'(2) \);
(b) \( g(x) = x + 2 \), \( g'(a) \) (for arbitrary \( a \in \mathbb{R} \));
(c) \( h(x) = x^2 \cos(x) \), \( g'(0) \);
(d) \( r(x) = \frac{3x+4}{2x-1} \), \( h'(1) \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ffa923b6f-81dd-482c-8885-6de6bc295751%2F63ed126e-75e8-4ca9-9e16-92331d642ec1%2Ftpnifi_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Calculate each of the following derivatives using only the definition of the derivative.
(a) \( f(x) = x^3 \), \( f'(2) \);
(b) \( g(x) = x + 2 \), \( g'(a) \) (for arbitrary \( a \in \mathbb{R} \));
(c) \( h(x) = x^2 \cos(x) \), \( g'(0) \);
(d) \( r(x) = \frac{3x+4}{2x-1} \), \( h'(1) \).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)