(c). ty" +3ty' + y = 0, t>0; y₁(t) = t−1 Assume that y2 = v(t)y₁, using above approach with p(t) = 3/t, we have let u = = v' 1-10" + ( − 1 1/2 + 1/320² = 0 +2 x² + 1 = 0 -u u' t 1 1 -du = dt In |u| = − In|t|+C, u = ct-1 == – v = Y2 = udt = c₁ In |t| + c₂ © 1½ (c₁ In |t| + C2) t

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

In each of the following problems, use the method of reduction of order to find a sec-

ond solution of the given differential equation. (Can you show steps)

(c). ty" +3ty' + y = 0, t>0; y₁(t) = t−1
Assume that y2 = v(t)y₁, using above approach with p(t) = 3/t, we have
let u =
= v'
1-10" + ( − 1 1/2 + 1/320² = 0
+2
x² + 1 = 0
-u
u'
t
1
1
-du =
dt
In |u| = − In|t|+C, u = ct-1
== –
v =
Y2
=
udt = c₁ In |t| + c₂
©
1½ (c₁ In |t| + C2)
t
Transcribed Image Text:(c). ty" +3ty' + y = 0, t>0; y₁(t) = t−1 Assume that y2 = v(t)y₁, using above approach with p(t) = 3/t, we have let u = = v' 1-10" + ( − 1 1/2 + 1/320² = 0 +2 x² + 1 = 0 -u u' t 1 1 -du = dt In |u| = − In|t|+C, u = ct-1 == – v = Y2 = udt = c₁ In |t| + c₂ © 1½ (c₁ In |t| + C2) t
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,