c. p> 1 7.One of the following sequences is divergent sequences a. 3n² + 2n n5 + 7 n! b.{-1)". (-1)2n c. {(-1)"e-3n} n² + 4n 5n+n²] d. ((-1)",

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

calculusssss please solve question 7

**Integral Convergence and Divergence Problems**

6. Given that the improper integral \( \int_{1}^{\infty} x^p - 2 \, dx \) converges, then "p" should be:

   a. \( p < 1 \)
   
   b. \( p <-1 \)
   
   c. \( p > 1 \)
   
   d. \( p > -1 \)

7. One of the following sequences is a divergent sequence:
   
   a. \( \left( \frac{2^n}{n!} \right) \)
   
   b. \( (-1)^n \frac{3n^4 + 2n}{n^5 + 7} \)
   
   c. \( \{(-1)^n e^{-3n} \} \)
   
   d. \( \{(-1)^n \frac{n^2 + 4n}{5n + n^2} \} \)

8. The sum of \( \sum_{n=0}^{\infty} \frac{(-1)^n 2 n}{n!} \)

   a. \( e^{-π^2} \)
   
   b. \( -e^{π^2} \)
   
   c. \( cos π \)
   
   d. \( -cos π \)


9. For the series \( \sum ( -1 ) \frac { n^2 + 3 } { n + 10 } \), one of the statements is true:

   a. Converges by Integral Test
   
   b. Diverges by Divergence Test
   
   c. Converges by Alternating Series Test
   
   d. Diverges by Root Test

10. The interval of convergence of the Power series: \( \sum ( -1 ) ^ n \frac { ( x - 4 ) ^ n } { n } \) is:
    
    a. \( ( 3, 5 ) \)
    
    b. \( [ 3, 5 ) \)
    
    c. \( [ 3, 5 ] \)
    
    d. \( ( 3, 5 ] \)

11. The series \( \sum_{m=1}^{∞} \left( \frac { 1 } { 3 } \right) ^ n \), has sum equal to:
   
    a
Transcribed Image Text:**Integral Convergence and Divergence Problems** 6. Given that the improper integral \( \int_{1}^{\infty} x^p - 2 \, dx \) converges, then "p" should be: a. \( p < 1 \) b. \( p <-1 \) c. \( p > 1 \) d. \( p > -1 \) 7. One of the following sequences is a divergent sequence: a. \( \left( \frac{2^n}{n!} \right) \) b. \( (-1)^n \frac{3n^4 + 2n}{n^5 + 7} \) c. \( \{(-1)^n e^{-3n} \} \) d. \( \{(-1)^n \frac{n^2 + 4n}{5n + n^2} \} \) 8. The sum of \( \sum_{n=0}^{\infty} \frac{(-1)^n 2 n}{n!} \) a. \( e^{-π^2} \) b. \( -e^{π^2} \) c. \( cos π \) d. \( -cos π \) 9. For the series \( \sum ( -1 ) \frac { n^2 + 3 } { n + 10 } \), one of the statements is true: a. Converges by Integral Test b. Diverges by Divergence Test c. Converges by Alternating Series Test d. Diverges by Root Test 10. The interval of convergence of the Power series: \( \sum ( -1 ) ^ n \frac { ( x - 4 ) ^ n } { n } \) is: a. \( ( 3, 5 ) \) b. \( [ 3, 5 ) \) c. \( [ 3, 5 ] \) d. \( ( 3, 5 ] \) 11. The series \( \sum_{m=1}^{∞} \left( \frac { 1 } { 3 } \right) ^ n \), has sum equal to: a
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning