c) Use the model to find the predicted value for the final grade when a student spends an average of 12.5 hours each week studying for math. Grade = 78.8 Round to 1 decimal place. d) According to the model, the final grade of a student who spends 13 hours each week on math is predicted to be 80.3. The percentage error (round to 2 decimal places) for this point is indicates that Select an answer %, which

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Consider the following data set, where y is the final grade in a math class and is the average number of
hours the student spent working on math each week.
hours/week
X
6.5
10
11
12.5
13
14.5
15
17.5
19.5
20
Grade
y
66.1
63
71.4
72.5
79.2
94.3
95
91.5
100
98
The regression equation is y = 3x + 41.3.
a) Explain what the value of the slope means in this situation, where y is the final grade in a math class
and is the average number of hours the student spent working on math each week.
O For each additional hour per week that a student studies on average, their final grade will be about
3 points.
O For each additional hour per week that a student studies on average, their final grade will be about
41.3 points higher.
For each additional hour per week that a student studies on average, their final grade will be about
3 points higher.
O For each additional hour per week that a student studies on average, their final grade will be about
41.3 points.
b) Explain what the value of the y-intercept means in this situation.
If a student spends no time each week studying for math, then they should expect to get a final
grade of about 41.3.
O The students should expect to get an average final grade of about 3.
O If a student spends no time each week studying for math, then they should expect to get a final
grade of about 3.
The students should expect to get an average final grade of about 41.3.
c) Use the model to find the predicted value for the final grade when a student spends an average of 12.5
hours each week studying for math.
Grade = 78.8
Round to 1 decimal place.
d) According to the model, the final grade of a student who spends 13 hours each week on math is predicted
to be 80.3.
The percentage error (round to 2 decimal places) for this point is
indicates that Select an answer
%, which
Transcribed Image Text:Consider the following data set, where y is the final grade in a math class and is the average number of hours the student spent working on math each week. hours/week X 6.5 10 11 12.5 13 14.5 15 17.5 19.5 20 Grade y 66.1 63 71.4 72.5 79.2 94.3 95 91.5 100 98 The regression equation is y = 3x + 41.3. a) Explain what the value of the slope means in this situation, where y is the final grade in a math class and is the average number of hours the student spent working on math each week. O For each additional hour per week that a student studies on average, their final grade will be about 3 points. O For each additional hour per week that a student studies on average, their final grade will be about 41.3 points higher. For each additional hour per week that a student studies on average, their final grade will be about 3 points higher. O For each additional hour per week that a student studies on average, their final grade will be about 41.3 points. b) Explain what the value of the y-intercept means in this situation. If a student spends no time each week studying for math, then they should expect to get a final grade of about 41.3. O The students should expect to get an average final grade of about 3. O If a student spends no time each week studying for math, then they should expect to get a final grade of about 3. The students should expect to get an average final grade of about 41.3. c) Use the model to find the predicted value for the final grade when a student spends an average of 12.5 hours each week studying for math. Grade = 78.8 Round to 1 decimal place. d) According to the model, the final grade of a student who spends 13 hours each week on math is predicted to be 80.3. The percentage error (round to 2 decimal places) for this point is indicates that Select an answer %, which
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,