c) u' - 6u = 6 d)-1 Q10) The singular point (s) of (x + 1) y' + x²y = 0, is (are): c) 0 b) 0,-1 a) 0,1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

please solve question 10 differential equations

Q1) L-1
a) cosht -1
b) 1 - cosht c) (cosh2t - 1) d)/(1-cosh2t)
Q2) The general solution of y"" + 2y" -y' - 2y = 0, is:
a) y(x) = c₂e²x + c₂e-* + c3e*
c) y(x) = c₁e²x + c₂ex
b) y(x) = c₂e-2x + c₂e-*
d) y(x) = c₂e-2x + ₂x + c3e-*
Q3) Evaluate L (e-2t sin4t):
4
s+2
a)
5+2
s²+8s+20
d)
s²+45+20
S²+45+20
s²+85+20
Q4) If the power series method was used to solve the following ODE..
(x-0.5)y"-5 y' + (x² - 1) y=0, x= 0. Then the interval of convergence, is:
a)
b) (-1,1)
c) (0,00)
Q5) fest dt =
е
b) 0
c)=²
d) ∞
.
y
Q6) If you know that the radius of convergent of the series method for the ODE
y"+y' + = 0, xo = 2 is 5. Find the value for b. (b < 0) :
(a) -5
x-b
(b)-3
(c)-2
d) <-8
Q7) L(y") =
=
a) s²L(y(x)) + sy(0) - y'(0)
b) s² L(y(x)) + sy(0) + y'(0)
c) s²L(y(x)) - sy(0) - y'(0)
d) s²L(y(x)) - sy(0) + y'(0)
Q8) Assume that the roots of a characteristic polynomial of a homogeneous ODE with constant
coefficients are 0,0,0,2+5i,2-5i, then the general solutiom of this ODE, is:
a) C₁ + C₂x + C3x² + e²x [Acos(x) + Bsin(x)]
b) C₁+C₂x + C3x² +e5x[Acos (2x) + Bsin(2x)]
c) C₁x + ₂x² + C3x³ + ex[Acos (5x) + Bsin(5x)]
d) C₁ + C₂x + C3x² + e²x [Acos (5x) + Bsin(5x)]
Q9) The linear form of nonlinear ODE y' - 2y = 2y, is:
a) u' + 6u = -6
b) u' - 6u = -6
c) u' - 6u = 6
d) u' + 6u = 6
Q10) The singular point (s) of (x + 1) y' + x²y = 0, is (are):
c) 0
b) 0,-1
a) 0,1
d)-1
Transcribed Image Text:Q1) L-1 a) cosht -1 b) 1 - cosht c) (cosh2t - 1) d)/(1-cosh2t) Q2) The general solution of y"" + 2y" -y' - 2y = 0, is: a) y(x) = c₂e²x + c₂e-* + c3e* c) y(x) = c₁e²x + c₂ex b) y(x) = c₂e-2x + c₂e-* d) y(x) = c₂e-2x + ₂x + c3e-* Q3) Evaluate L (e-2t sin4t): 4 s+2 a) 5+2 s²+8s+20 d) s²+45+20 S²+45+20 s²+85+20 Q4) If the power series method was used to solve the following ODE.. (x-0.5)y"-5 y' + (x² - 1) y=0, x= 0. Then the interval of convergence, is: a) b) (-1,1) c) (0,00) Q5) fest dt = е b) 0 c)=² d) ∞ . y Q6) If you know that the radius of convergent of the series method for the ODE y"+y' + = 0, xo = 2 is 5. Find the value for b. (b < 0) : (a) -5 x-b (b)-3 (c)-2 d) <-8 Q7) L(y") = = a) s²L(y(x)) + sy(0) - y'(0) b) s² L(y(x)) + sy(0) + y'(0) c) s²L(y(x)) - sy(0) - y'(0) d) s²L(y(x)) - sy(0) + y'(0) Q8) Assume that the roots of a characteristic polynomial of a homogeneous ODE with constant coefficients are 0,0,0,2+5i,2-5i, then the general solutiom of this ODE, is: a) C₁ + C₂x + C3x² + e²x [Acos(x) + Bsin(x)] b) C₁+C₂x + C3x² +e5x[Acos (2x) + Bsin(2x)] c) C₁x + ₂x² + C3x³ + ex[Acos (5x) + Bsin(5x)] d) C₁ + C₂x + C3x² + e²x [Acos (5x) + Bsin(5x)] Q9) The linear form of nonlinear ODE y' - 2y = 2y, is: a) u' + 6u = -6 b) u' - 6u = -6 c) u' - 6u = 6 d) u' + 6u = 6 Q10) The singular point (s) of (x + 1) y' + x²y = 0, is (are): c) 0 b) 0,-1 a) 0,1 d)-1
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,