c) f(x) = (0, 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

How would I do fourier (even) cosine series and fourier (odd) sine series on attached. I have to graph these too by hand and not sure how. This is piecewise function, Thanks so much

c) f(x) =
(0, 0<x< 1
(1, 1<x < 2
Transcribed Image Text:c) f(x) = (0, 0<x< 1 (1, 1<x < 2
Expert Solution
Step 1

Solving Fourier cosine and sine series

fx=0, 0<x<11, 1<x<2

Step 2

As f-x=-fx  so fx is an odd function of x.

Hence, an=0  for all n

fx=a02+n=1ancosnπxl+bnsinnπxl mm                                                                                                                                                                                                                                                                                                                                                                                                                                                

Now, 

a0=1l-llfxdxa0=11010dx+121dxa0=1.121dxa0=x12a0=2-1=1

Step 3

hence, a0=12

bn=1l-llfxsinnπxldxbn=11010.sinnπx1dx+121.sinnπx1dxbn=121.sinnπx1dxintegral of sinx dx=-cosxbn=-cosnπxnπ12bn=-1nπcos2nπ-cosnπ   for all n1b1=-1πcos2π-cosπ =-2πb2=-12πcos4π-cos2π=0b3=-13πcos6π-cos3π=-23πb4=-14πcos8π-cos4π=0b5=-15πcos10π-cos5π=-25π

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 1 images

Blurred answer
Knowledge Booster
Fourier Transformation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,