c) f(t) = { t², 0≤t<3 9, 3≤t a

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
1C
**Title: Expressing Functions in Terms of Unit Step Functions**

**Objective:**

To express the following piecewise functions using unit step functions and sketch their graphs.

---

**Problems:**

**1. Express the given function in terms of unit step function(s):**

---

**a) Function:**  
\[ 
f(t) = 
\begin{cases} 
2, & 0 \leq t < 4 \\
5, & 4 \leq t 
\end{cases}
\]

---

**b) Function:**  
\[ 
f(t) = 
\begin{cases} 
-1, & 0 \leq t < 2 \\
3, & 2 \leq t 
\end{cases}
\]

---

**c) Function:**  
\[ 
f(t) = 
\begin{cases} 
t^2, & 0 \leq t < 3 \\
9, & 3 \leq t 
\end{cases}
\]

---

**d) Function:**  
\[ 
f(t) = 
\begin{cases} 
0, & 0 \leq t < \pi \\
\sin(t - \pi), & \pi \leq t 
\end{cases}
\]

---

**e) Function:**  
\[ 
f(t) = 
\begin{cases} 
5, & 0 \leq t < 2 \\
2, & 2 \leq t < 4 \\
4, & 4 \leq t 
\end{cases}
\]

---

**f) Function:**  
\[ 
f(t) = 
\begin{cases} 
2t, & 0 \leq t < \pi/2 \\
\pi, & \pi/2 \leq t < 3\pi/2 \\
\cos(t - 3\pi/2), & 3\pi/2 \leq t 
\end{cases}
\]

---

**Instructions:**

1. Express each function in terms of unit step functions.
2. Sketch the graph of each function accurately to visualize the transitions defined in each piece.

**Note:**  
Unit step function can be defined as:
\[ u(t-a) = 
\begin{cases} 
0, & t < a \\
1, & t \geq a 
\end{cases
Transcribed Image Text:**Title: Expressing Functions in Terms of Unit Step Functions** **Objective:** To express the following piecewise functions using unit step functions and sketch their graphs. --- **Problems:** **1. Express the given function in terms of unit step function(s):** --- **a) Function:** \[ f(t) = \begin{cases} 2, & 0 \leq t < 4 \\ 5, & 4 \leq t \end{cases} \] --- **b) Function:** \[ f(t) = \begin{cases} -1, & 0 \leq t < 2 \\ 3, & 2 \leq t \end{cases} \] --- **c) Function:** \[ f(t) = \begin{cases} t^2, & 0 \leq t < 3 \\ 9, & 3 \leq t \end{cases} \] --- **d) Function:** \[ f(t) = \begin{cases} 0, & 0 \leq t < \pi \\ \sin(t - \pi), & \pi \leq t \end{cases} \] --- **e) Function:** \[ f(t) = \begin{cases} 5, & 0 \leq t < 2 \\ 2, & 2 \leq t < 4 \\ 4, & 4 \leq t \end{cases} \] --- **f) Function:** \[ f(t) = \begin{cases} 2t, & 0 \leq t < \pi/2 \\ \pi, & \pi/2 \leq t < 3\pi/2 \\ \cos(t - 3\pi/2), & 3\pi/2 \leq t \end{cases} \] --- **Instructions:** 1. Express each function in terms of unit step functions. 2. Sketch the graph of each function accurately to visualize the transitions defined in each piece. **Note:** Unit step function can be defined as: \[ u(t-a) = \begin{cases} 0, & t < a \\ 1, & t \geq a \end{cases
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,