(c) Determine the natural cubic spline that interpolates the data f(0) = 1, f(3) = 2, f(8) = 3 and find the approximate value of f(3.2) correct to four decimal places.
(c) Determine the natural cubic spline that interpolates the data f(0) = 1, f(3) = 2, f(8) = 3 and find the approximate value of f(3.2) correct to four decimal places.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
3c
If you answer fast I will subscribe
![Let f(x) = x cos (2x) – a, xo = 0, 1 = 0.3,
X2 = 0.7.
(a) Find Lagrange interpolating polynomial for f(x) using the three given nodes
leaving all coefficients correct to 5 decimal points.
(b) Using the nodes r, and a1, construct the Hermite interpolating polynomial H3(r)
for f(x) using the Lagrange coefficient polynomials expressing all coefficients
correct to 5 decimal places.
(c) Determine the natural cubic spline that interpolates the data
f(0) = 1, f(3) = 2, f(8) = 3
and find the approximate value of f(3.2) correct to four decimal places.
(d) The cubic Legendre polynomial is P2(x) = (5x³ – 3r). Prove that it is orthog-
onal (over [-1, 1]) to all polynomials of degree 2.
%3D](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F38d1926f-bca1-4711-adbc-8837cf013bc2%2Fae73041f-8b9f-4f9e-b623-60806342834c%2Fidnsjc_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Let f(x) = x cos (2x) – a, xo = 0, 1 = 0.3,
X2 = 0.7.
(a) Find Lagrange interpolating polynomial for f(x) using the three given nodes
leaving all coefficients correct to 5 decimal points.
(b) Using the nodes r, and a1, construct the Hermite interpolating polynomial H3(r)
for f(x) using the Lagrange coefficient polynomials expressing all coefficients
correct to 5 decimal places.
(c) Determine the natural cubic spline that interpolates the data
f(0) = 1, f(3) = 2, f(8) = 3
and find the approximate value of f(3.2) correct to four decimal places.
(d) The cubic Legendre polynomial is P2(x) = (5x³ – 3r). Prove that it is orthog-
onal (over [-1, 1]) to all polynomials of degree 2.
%3D
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)