C Consider two interconnected tanks as shown in the figure above. Tank 1 initial contains 100 L (liters) of water and 160 g of salt, while tank 2 initially contains 60 L of water and 345 g of salt. Water containing 15 g/L of salt is poured into tank1 at a rate of 1.5 L/min while the mixture flowing into tank 2 contains a salt concentration of 50 g/L of salt and is flowing at the rate of 4 L/min. The two connecting tubes have a flow rate of 2.5 L/min from tank 1 to tank 2; and of 1 L/min from tank 2 back to tank 1. Tank 2 is drained at the rate of 5.5 L/min.
C Consider two interconnected tanks as shown in the figure above. Tank 1 initial contains 100 L (liters) of water and 160 g of salt, while tank 2 initially contains 60 L of water and 345 g of salt. Water containing 15 g/L of salt is poured into tank1 at a rate of 1.5 L/min while the mixture flowing into tank 2 contains a salt concentration of 50 g/L of salt and is flowing at the rate of 4 L/min. The two connecting tubes have a flow rate of 2.5 L/min from tank 1 to tank 2; and of 1 L/min from tank 2 back to tank 1. Tank 2 is drained at the rate of 5.5 L/min.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Consider two interconnected tanks as shown in the figure above. Tank 1 initial contains 100 L (liters) of water and 160 g of salt, while tank 2 initially contains 60 L of water and 345 g of salt. Water
containing 15 g/L of salt is poured into tank1 at a rate of 1.5 L/min while the mixture flowing into tank 2 contains a salt concentration of 50 g/L of salt and is flowing at the rate of 4 L/min. The two
connecting tubes have a flow rate of 2.5 L/min from tank 1 to tank 2: and of 1 L/min from tank 2 back to tank 1. Tank 2 is drained at the rate of 5.5 L/min.
You may assume that the solutions in each tank are thoroughly mixed so that the concentration of the mixture leaving any tank along any of the tubes has the same concentration of salt as the
tank as a whole. (This is not completely realistic, but as in real physics, we are going to work with the approximate, rather than exact description. The 'real' equations of physics are often too
complicated to even write down precisely, much less solve.)
How does the water in each tank change over time?
Let p(t) and g(t) be the amount of salt in g at time t in tanks 1 and 2 respectively. Write differential equations for p and q. (As usual, use the symbols p and g rather than p(t) and g(t).)
MANN
Give the initial values:
[]-[8]
=
p(0)
9(0)
Activate
Go to Settin](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fac82f28a-c634-4fa4-8eee-abcb05719651%2F6d9272a4-a2b8-49e9-b58d-53193ba1ee39%2Fx5wqmd_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Consider two interconnected tanks as shown in the figure above. Tank 1 initial contains 100 L (liters) of water and 160 g of salt, while tank 2 initially contains 60 L of water and 345 g of salt. Water
containing 15 g/L of salt is poured into tank1 at a rate of 1.5 L/min while the mixture flowing into tank 2 contains a salt concentration of 50 g/L of salt and is flowing at the rate of 4 L/min. The two
connecting tubes have a flow rate of 2.5 L/min from tank 1 to tank 2: and of 1 L/min from tank 2 back to tank 1. Tank 2 is drained at the rate of 5.5 L/min.
You may assume that the solutions in each tank are thoroughly mixed so that the concentration of the mixture leaving any tank along any of the tubes has the same concentration of salt as the
tank as a whole. (This is not completely realistic, but as in real physics, we are going to work with the approximate, rather than exact description. The 'real' equations of physics are often too
complicated to even write down precisely, much less solve.)
How does the water in each tank change over time?
Let p(t) and g(t) be the amount of salt in g at time t in tanks 1 and 2 respectively. Write differential equations for p and q. (As usual, use the symbols p and g rather than p(t) and g(t).)
MANN
Give the initial values:
[]-[8]
=
p(0)
9(0)
Activate
Go to Settin
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)