C-7.29 Revise the array list implementation given in Section 7.2.1 so that when the ac- tual number of elements, n, in the array goes below N/4, where N is the array capacity, the array shrinks to half its size. C-7.30 Prove that when using a dynamic array that grows and shrinks as in the previous exercise, the following series of 2n operations takes O(n) time: n insertions at the end of an initially empty list, followed by n deletions, each from the end of the list. C-7.31 Give a formal proof that any sequence of n push or pop operations (that is, in- sertions or deletions at the end) on an initially empty dynamic array takes O(n) time, if using the strategy described in Exercise C-7.29. C-7.32 Consider a variant of Exercise C-7.29, in which an array of capacity N is resized to capacity precisely that of the number of elements, any time the number of elements in the array goes strictly below N/4. Give a formal proof that any sequence of n push or pop operations on an initially empty dynamic array takes O(n) time. C-7.33 Consider a variant of Exercise C-7.29, in which an array of capacity N, is resized to capacity precisely that of the number of elements, any time the number of elements in the array goes strictly below N/2. Show that there exists a sequence of n push and pop operations that requires (n²) time to execute.
C-7.29 Revise the array list implementation given in Section 7.2.1 so that when the ac- tual number of elements, n, in the array goes below N/4, where N is the array capacity, the array shrinks to half its size. C-7.30 Prove that when using a dynamic array that grows and shrinks as in the previous exercise, the following series of 2n operations takes O(n) time: n insertions at the end of an initially empty list, followed by n deletions, each from the end of the list. C-7.31 Give a formal proof that any sequence of n push or pop operations (that is, in- sertions or deletions at the end) on an initially empty dynamic array takes O(n) time, if using the strategy described in Exercise C-7.29. C-7.32 Consider a variant of Exercise C-7.29, in which an array of capacity N is resized to capacity precisely that of the number of elements, any time the number of elements in the array goes strictly below N/4. Give a formal proof that any sequence of n push or pop operations on an initially empty dynamic array takes O(n) time. C-7.33 Consider a variant of Exercise C-7.29, in which an array of capacity N, is resized to capacity precisely that of the number of elements, any time the number of elements in the array goes strictly below N/2. Show that there exists a sequence of n push and pop operations that requires (n²) time to execute.
Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
Related questions
Question
Java
Please help with question: C 7.33:
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Recommended textbooks for you
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education