By dragging all of the statements from the left column to the right column below, display a complete calculation of ₂³(5 + 4x) dx using Riemann sums. Statements to choose from: Drag these statements to the right column. [²15 + (5+4x) dx = lim n-00 = lim n→∞ = lim n→∞0 = lim n→∞ lim n-00 = lim n→∞ 12 k=1 = lim [1/³ + 2/2 (2k − 1)] n→∞0 n k=1 k=1 k=1 f(xk) Ax 13 + 2) = 15 (1³n+ 2²/2 n²) [(5 + 4(2 + ½ (2k − 1))) ½] n 32 2k - [(13 + 2/12 (2k − 1)) 1/2] Your solution: Put the statements in order in this column and press the Submit Answers button.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Please answer the questions with steps and correct answer

By dragging **all** of the statements from the left column to the right column below, display a complete calculation of \(\int_{2}^{3} (5 + 4x) dx\) using Riemann sums.

**Statements to choose from:** Drag these statements to the right column.

1. \(\int_{2}^{3} (5 + 4x) dx = \lim_{{n \to \infty}} \sum_{{k=1}}^{n} f(\bar{x}_k) \Delta x\)

2. \(= \lim_{{n \to \infty}} \left(13 + 2\right) = 15\)

3. \(= \lim_{{n \to \infty}} \left(\frac{13}{n} + \frac{2}{n^2} n^2\right)\)

4. \(= \lim_{{n \to \infty}} \sum_{{k=1}}^{n} \left[\frac{13}{n} + \frac{2}{n^2} (2k - 1)\right]\)

5. \(= \lim_{{n \to \infty}} \sum_{{k=1}}^{n} \left[(5 + 4\left(2 + \frac{1}{2n}(2k - 1)\right)) \frac{1}{n}\right]\)

6. \(= \lim_{{n \to \infty}} \left(\frac{13}{n} \sum_{{k=1}}^{n} [1] + \frac{2}{n^2} \sum_{{k=1}}^{n} [2k - 1]\right)\)

7. \(= \lim_{{n \to \infty}} \sum_{{k=1}}^{n} \left[(13 + \frac{2}{n}(2k - 1)) \frac{1}{n}\right]\)

**Your solution:** Put the statements in order in this column and press the Submit Answers button.
Transcribed Image Text:By dragging **all** of the statements from the left column to the right column below, display a complete calculation of \(\int_{2}^{3} (5 + 4x) dx\) using Riemann sums. **Statements to choose from:** Drag these statements to the right column. 1. \(\int_{2}^{3} (5 + 4x) dx = \lim_{{n \to \infty}} \sum_{{k=1}}^{n} f(\bar{x}_k) \Delta x\) 2. \(= \lim_{{n \to \infty}} \left(13 + 2\right) = 15\) 3. \(= \lim_{{n \to \infty}} \left(\frac{13}{n} + \frac{2}{n^2} n^2\right)\) 4. \(= \lim_{{n \to \infty}} \sum_{{k=1}}^{n} \left[\frac{13}{n} + \frac{2}{n^2} (2k - 1)\right]\) 5. \(= \lim_{{n \to \infty}} \sum_{{k=1}}^{n} \left[(5 + 4\left(2 + \frac{1}{2n}(2k - 1)\right)) \frac{1}{n}\right]\) 6. \(= \lim_{{n \to \infty}} \left(\frac{13}{n} \sum_{{k=1}}^{n} [1] + \frac{2}{n^2} \sum_{{k=1}}^{n} [2k - 1]\right)\) 7. \(= \lim_{{n \to \infty}} \sum_{{k=1}}^{n} \left[(13 + \frac{2}{n}(2k - 1)) \frac{1}{n}\right]\) **Your solution:** Put the statements in order in this column and press the Submit Answers button.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,