By differentiating the function H (uo,..., u5) with respect to u; (i = 0, ..., 5), we obtain %3D Huo = A, (5.26) (a1B2 – a2B1) uz+ (a1B3 – a3ß1) uz + (@1B4 – a4B1) u4 + (@1ß5 – a5ß1) u5 Hu | 2 (EL(A) (5.27) - (a1ß2– a2B1) u1 + (a2B3 – a3ß2) uz + (a2B4 – a4ß2) U4 + (a2ß5 – a5B2) u5 2 Hu2 (5.28) 16 - (a1ß3 – a3ß1) u1 – (a2B3 – azB2) u2 + (a3B4 – a483) u4 + (a3ß5 – a5ß3) ua | | | Hua (5.29) (a1ß4 – a4B1) U1 - (a2B4 – a4B2) u2 – (a3B4 – a483) uz + (a4ß5 – a5ß4) u5 - Hu4 %3D (5.30) and (a1ß5 – a5ß1) u1 - (a2B5 – a5B2) u2 – (a3B5 – asß3) uz – (a465 – a5ß4) u4 | Hus %3D (5.31)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question

Show me the steps of determine red and the inf is here

Theorem 7 For any values of the quotient 1 , If A < 1, then the
positive equilibrium point ỹ of Eq. (1.1) is a global attractor and the following
i=1
conditions hold
a1B2 > a2ß1, a1ß3 2 a3ß1, aiß4 2 a4B1, a1ß5 > a5B1, a2B3 2 azb2, a2b4 2 a4ß2,
a2B5 > a562, azß4 2 a4B3, a3ß5 2 a5B3, a4ß5 > a5B4 and a5 > (a1 + a2 + a3 + a4).
(5.25)
proof: Let {ym}=-5 be a positive solution of Eq.(1.1). and let H :
(0, 00)6 → (0, 0) be a continuous function which is defined by
H(uo, .., u5)
Auo +
By differentiating the function H(uo,..., u5) with respect to u; (i = 0,.., 5),
we obtain
Huo = A,
(5.26)
(a1B2 - a2B1) u2 + (a1ß3 – a3B1) uz + (@1B4 – a4ß1) u4 + (a1ß5 – a5ß1) u5
Hui
2
(5.27)
(a1B2 – a2B1) u1 +(@2B3 – azß2) u3 + (a2B4 – a4B2) u4 + (a2ß5 – a5B2) u5
Huz
i=1
(5.28)
16
(a133 – a3B1) u1 - (a23 – a382) u2 + (a3B4 – a4B3) u4 + (a3ß5 – a5B3) us
Huz
2
(5.29)
(a1B4 – 04B1) u1 - (a2B4 – a4B2) u2 - (a3B4 - a4B3) uz + (a4ß5 – asß4) u5
Hus
2
(5.30)
and
(a1ß5 – asB1) u1 - (a2B5 – a5B2) u2 - (a3ß5 – asB3) uz – (a465 – asß4) u4
Hus
i=1
(5.31)
It is observed that the function H(uo, ..., u5) is non-decreasing in uo,u1
and non-increasing in u5. Now, we consider four cases:
Transcribed Image Text:Theorem 7 For any values of the quotient 1 , If A < 1, then the positive equilibrium point ỹ of Eq. (1.1) is a global attractor and the following i=1 conditions hold a1B2 > a2ß1, a1ß3 2 a3ß1, aiß4 2 a4B1, a1ß5 > a5B1, a2B3 2 azb2, a2b4 2 a4ß2, a2B5 > a562, azß4 2 a4B3, a3ß5 2 a5B3, a4ß5 > a5B4 and a5 > (a1 + a2 + a3 + a4). (5.25) proof: Let {ym}=-5 be a positive solution of Eq.(1.1). and let H : (0, 00)6 → (0, 0) be a continuous function which is defined by H(uo, .., u5) Auo + By differentiating the function H(uo,..., u5) with respect to u; (i = 0,.., 5), we obtain Huo = A, (5.26) (a1B2 - a2B1) u2 + (a1ß3 – a3B1) uz + (@1B4 – a4ß1) u4 + (a1ß5 – a5ß1) u5 Hui 2 (5.27) (a1B2 – a2B1) u1 +(@2B3 – azß2) u3 + (a2B4 – a4B2) u4 + (a2ß5 – a5B2) u5 Huz i=1 (5.28) 16 (a133 – a3B1) u1 - (a23 – a382) u2 + (a3B4 – a4B3) u4 + (a3ß5 – a5B3) us Huz 2 (5.29) (a1B4 – 04B1) u1 - (a2B4 – a4B2) u2 - (a3B4 - a4B3) uz + (a4ß5 – asß4) u5 Hus 2 (5.30) and (a1ß5 – asB1) u1 - (a2B5 – a5B2) u2 - (a3ß5 – asB3) uz – (a465 – asß4) u4 Hus i=1 (5.31) It is observed that the function H(uo, ..., u5) is non-decreasing in uo,u1 and non-increasing in u5. Now, we consider four cases:
The main focus of this article is to discuss some qualitative behavior of
the solutions of the nonlinear difference equation
a1Ym-1+a2Ym-2+ a3Ym-3+ a4Ym–4+ a5Ym-5
Ут+1 — Аутt
т 3 0, 1, 2, ...,
B1Ym-1+ B2Ym-2 + B3Ym-3 + B4Ym-4 + B3Ym-5
(1.1)
where the coefficients A, a;, B; E (0, 0), i = 1, ..., 5, while the initial condi-
tions y-5,y-4,Y–3,Y–2, Y–1, yo are arbitrary positive real numbers. Note that
the special case of Eq.(1.1) has been discussed in [4] when az = B3 = a4 =
= a5 = B5 = 0 and Eq.(1.1) has been studied in [8] in the special case
B4
when a4 =
B4 = a5 = B5 = 0 and Eq.(1.1) has been discussed in [5] in the
special case when az = B5 = 0.
Transcribed Image Text:The main focus of this article is to discuss some qualitative behavior of the solutions of the nonlinear difference equation a1Ym-1+a2Ym-2+ a3Ym-3+ a4Ym–4+ a5Ym-5 Ут+1 — Аутt т 3 0, 1, 2, ..., B1Ym-1+ B2Ym-2 + B3Ym-3 + B4Ym-4 + B3Ym-5 (1.1) where the coefficients A, a;, B; E (0, 0), i = 1, ..., 5, while the initial condi- tions y-5,y-4,Y–3,Y–2, Y–1, yo are arbitrary positive real numbers. Note that the special case of Eq.(1.1) has been discussed in [4] when az = B3 = a4 = = a5 = B5 = 0 and Eq.(1.1) has been studied in [8] in the special case B4 when a4 = B4 = a5 = B5 = 0 and Eq.(1.1) has been discussed in [5] in the special case when az = B5 = 0.
Expert Solution
Step 1

Given:

H:0,60, is a continuous function defined by 

                                                      Hu0,u1,,u5=Au0+i=15αiuii=15βiui  ..... (*)

To find:

Partial derivatives of H with respect to u0,u1,u2,u3,u4, and u5.

steps

Step by step

Solved in 6 steps

Blurred answer
Knowledge Booster
Quadrilaterals
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,