By differentiating the function H (uo,..., u5) with respect to u; (i = 0, ..., 5), we obtain %3D Huo = A, (5.26) (a1B2 – a2B1) uz+ (a1B3 – a3ß1) uz + (@1B4 – a4B1) u4 + (@1ß5 – a5ß1) u5 Hu | 2 (EL(A) (5.27) - (a1ß2– a2B1) u1 + (a2B3 – a3ß2) uz + (a2B4 – a4ß2) U4 + (a2ß5 – a5B2) u5 2 Hu2 (5.28) 16 - (a1ß3 – a3ß1) u1 – (a2B3 – azB2) u2 + (a3B4 – a483) u4 + (a3ß5 – a5ß3) ua | | | Hua (5.29) (a1ß4 – a4B1) U1 - (a2B4 – a4B2) u2 – (a3B4 – a483) uz + (a4ß5 – a5ß4) u5 - Hu4 %3D (5.30) and (a1ß5 – a5ß1) u1 - (a2B5 – a5B2) u2 – (a3B5 – asß3) uz – (a465 – a5ß4) u4 | Hus %3D (5.31)
By differentiating the function H (uo,..., u5) with respect to u; (i = 0, ..., 5), we obtain %3D Huo = A, (5.26) (a1B2 – a2B1) uz+ (a1B3 – a3ß1) uz + (@1B4 – a4B1) u4 + (@1ß5 – a5ß1) u5 Hu | 2 (EL(A) (5.27) - (a1ß2– a2B1) u1 + (a2B3 – a3ß2) uz + (a2B4 – a4ß2) U4 + (a2ß5 – a5B2) u5 2 Hu2 (5.28) 16 - (a1ß3 – a3ß1) u1 – (a2B3 – azB2) u2 + (a3B4 – a483) u4 + (a3ß5 – a5ß3) ua | | | Hua (5.29) (a1ß4 – a4B1) U1 - (a2B4 – a4B2) u2 – (a3B4 – a483) uz + (a4ß5 – a5ß4) u5 - Hu4 %3D (5.30) and (a1ß5 – a5ß1) u1 - (a2B5 – a5B2) u2 – (a3B5 – asß3) uz – (a465 – a5ß4) u4 | Hus %3D (5.31)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Topic Video
Question
Show me the steps of determine red and the inf is here
Expert Solution
Step 1
Given:
is a continuous function defined by
.....
To find:
Partial derivatives of with respect to .
Step by step
Solved in 6 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,