by (3x? + y²) dx+ (2.xy) dy 7. C: 3D1 from (3,0) to (0,4) %3D - = 1 6.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question
by
(3x? + y²) dx+ (2.xy) dy
7.
C:
3D1
from (3,0)
to (0,4)
%3D
- = 1
6.
Transcribed Image Text:by (3x? + y²) dx+ (2.xy) dy 7. C: 3D1 from (3,0) to (0,4) %3D - = 1 6.
Expert Solution
Step 1

We are given the following integral:
C(3x2+y2) dx + (2xy) dy over the path C: x29+y216 = 1 from (3, 0) to (0, 4).
The path C can be drawn as
Advanced Math homework question answer, step 1, image 1

Step 2

Now, we form the parameterization of the path C.
Let x = 3 cos t, y = 4 sin t dx = -3 sin t dt; dy = 4 cos t dt. From the figure we can see that the path C is a quarter of the circle. The value of t ranges from 0 to π2
Therefore, 
I = C3x2+y2 dx + (2xy) dy  = 0π2 3(9 cos2t) + (16 sin2t)(-3 sin t) + (23 cos t(4 sin t))4 cos t dt  = 0π227 cos2t + 16 sin2t(- sin t)+(96 cos2t sin t) dt  =0π211 cos2t + 1(-3 sin t)+(96 cos2t sin t) dt  =0π2-11 cos2t sin t -3 sin t+96 cos2t sin t dt  =0π263 cos2t sin t - 3 sin t dt

steps

Step by step

Solved in 4 steps with 1 images

Blurred answer
Knowledge Booster
Implicit Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,