(BU C) n Let A, B, and C be sets. Using the Identities sets table, show that (A U B) n (AUC) = ĀnBnc %3D

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question
### Proof of Set Identity Using the Identities Sets Table

#### Problem Statement
Let \( A \), \( B \), and \( C \) be sets. Using the Identities sets table, show that:

\[
\overline{(A \cup B)} \cap \overline{(B \cup C)} \cap \overline{(A \cup C)} = \overline{A} \cap \overline{B} \cap \overline{C}
\]

#### Proof
To prove the given identity using set laws, we will follow several steps employing De Morgan’s laws and properties of set operations.

1. **De Morgan’s Laws**:
   - \(\overline{A \cup B} = \overline{A} \cap \overline{B}\)
   - \(\overline{A \cap B} = \overline{A} \cup \overline{B}\)

2. **Applying De Morgan’s Law** to each term in the left-hand side of the equation:

\[
\overline{(A \cup B)} = \overline{A} \cap \overline{B}
\]
\[
\overline{(B \cup C)} = \overline{B} \cap \overline{C}
\]
\[
\overline{(A \cup C)} = \overline{A} \cap \overline{C}
\]

3. **Substituting these results** into the left-hand side of the given identity:

\[
\overline{(A \cup B)} \cap \overline{(B \cup C)} \cap \overline{(A \cup C)} = (\overline{A} \cap \overline{B}) \cap (\overline{B} \cap \overline{C}) \cap (\overline{A} \cap \overline{C})
\]

4. **Simplifying the expression**:

Using the associative and commutative properties of intersection:
\[
 (\overline{A} \cap \overline{B}) \cap (\overline{B} \cap \overline{C}) \cap (\overline{A} \cap \overline{C}) = (\overline{A} \cap \overline{A}) \cap (\overline{B}
Transcribed Image Text:### Proof of Set Identity Using the Identities Sets Table #### Problem Statement Let \( A \), \( B \), and \( C \) be sets. Using the Identities sets table, show that: \[ \overline{(A \cup B)} \cap \overline{(B \cup C)} \cap \overline{(A \cup C)} = \overline{A} \cap \overline{B} \cap \overline{C} \] #### Proof To prove the given identity using set laws, we will follow several steps employing De Morgan’s laws and properties of set operations. 1. **De Morgan’s Laws**: - \(\overline{A \cup B} = \overline{A} \cap \overline{B}\) - \(\overline{A \cap B} = \overline{A} \cup \overline{B}\) 2. **Applying De Morgan’s Law** to each term in the left-hand side of the equation: \[ \overline{(A \cup B)} = \overline{A} \cap \overline{B} \] \[ \overline{(B \cup C)} = \overline{B} \cap \overline{C} \] \[ \overline{(A \cup C)} = \overline{A} \cap \overline{C} \] 3. **Substituting these results** into the left-hand side of the given identity: \[ \overline{(A \cup B)} \cap \overline{(B \cup C)} \cap \overline{(A \cup C)} = (\overline{A} \cap \overline{B}) \cap (\overline{B} \cap \overline{C}) \cap (\overline{A} \cap \overline{C}) \] 4. **Simplifying the expression**: Using the associative and commutative properties of intersection: \[ (\overline{A} \cap \overline{B}) \cap (\overline{B} \cap \overline{C}) \cap (\overline{A} \cap \overline{C}) = (\overline{A} \cap \overline{A}) \cap (\overline{B}
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
LUP Decomposition
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education