Bravais basis lattice vectors b,, b2, b3 are defined with the real space basis vectors a1, a2, az in the following: 2π(a, x α,) ,b2 [а, (аz х аз)1" 2n (az x a,) 2π(α x ,) b1 and b3 [а, (аz х аз)] [a1 · (a2 x a3)] 27(b2xb3) [b1•(b2×b3)] Prove its inversion vector relation a, = etc by vector identities like A × (B × C) = В (A- С) — С(А В) and A - (В x С) B· (C × A) = C ·(A × B). %|

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Bravais basis lattice vectors b1, b2, bz are defined with the real space
basis vectors a1, a2, az in the following:
2п (аз х а,)
2п (а, х аз)
bị
[a1 · (az x a3)]'
2π (α x α,)
,and b3
[а, : (а, х аз)]"
[а : (аz х аз)]
2π (b xb3)
[b1 (b2xb3)]
Prove its inversion vector relation a,
etc by vector identities like A × (B × C) =
В (А: С) — С(А В) and A - (В х С) — В: (СХА) — С - (Ах В).
Transcribed Image Text:Bravais basis lattice vectors b1, b2, bz are defined with the real space basis vectors a1, a2, az in the following: 2п (аз х а,) 2п (а, х аз) bị [a1 · (az x a3)]' 2π (α x α,) ,and b3 [а, : (а, х аз)]" [а : (аz х аз)] 2π (b xb3) [b1 (b2xb3)] Prove its inversion vector relation a, etc by vector identities like A × (B × C) = В (А: С) — С(А В) and A - (В х С) — В: (СХА) — С - (Ах В).
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,