Classes Of Functional Groups
Organic Chemistry deals mostly with carbon and hydrogens, also called hydrocarbons, but those groups which replace hydrogen and bonds with carbon to give a characteristic nature, unique of their own, to the hydrocarbon they are attached to, are called functional groups. All the compounds belonging to a functional group undergo reactions in a similar pattern and are known to have similar physical and chemical properties.
Characteristics Of Functional Groups
In organic chemistry, we encounter a number of special substituent groups which are attached to the hydrocarbon backbone. These groups impart certain characteristics to the molecule of which it is a part of and thus, become the highlight of that particular molecule.
IUPAC Nomenclature
In Chemistry, IUPAC stands for International Union of Pure and Applied Chemistry which suggested a systematic naming approach for the organic and inorganic compounds, as in the beginning stage of nomenclature one single chemical compound was named in many ways by which lead to confusion. The need for this approach aroused as the number of chemical compounds newly discovered were increasing (approximately 32 million compounds) and the basic concept of nomenclature i.e. the trivial nomenclature and the derived system of nomenclature failed to overcome the challenge. It is an important task to name a chemical compound systematically and unambiguously which reduces lots of confusion about the newly reported compounds.
Draw a stepwise mechanism for the following reaction.
SN1 mechanism : It is a Nucleophilic substitution reaction where cabocation formation is the rate determining step i.e. only one molecule is involved .
Basically SN1 reaction is a two step process , where
First step is the slow step i.e. the detachment of leaving group and formation of planar carbocation.
Second step is the fast step i.e. attack of neucleophile to the electron deficient center.
E1 mechanism : It is also a two step process and after cabocation formation there might be a possibility of hydrogen abstraction and formation of double bond.
In a SN1 reaction there have always a low amount of E1 product . Again if the temperature increases then percentage of E1 product will increase with the SN1 product.
Step by step
Solved in 2 steps with 1 images