Scenario 1 Mortality Rate: __10_____________________ Generation 0 (start) 50 100 150 200 250 Population Size 100 195 204 200 183 207 Proportion R allele 0.55 0.48 0.65 0.77 0.84 0.73 Proportion r allele 0.45 0.52 0.35 0.23 0.16 0.28 Proportion rr Genotype 0.17 0.29 0.09 0.06 0.03 0.06 Proportion Rr Genotype 0.56 0.47 0.5 0.35 0.28 0.43 Proportion RR Genotype 0.27 0.25 0.41 0.6 0.69 0.52 Scenario 2 Mortality Rate: ____5___________________ Generation 0 (start) 50 100 150 200 250 Population Size 100 206 202 203 205 202 Proportion R allele 0.57 0.78 0.74 0.73 0.69 0.85 Proportion r allele 0.43 0.22 0.26 0.27 0.31 0.15 Proportion rr Genotype 0.18 0.05 0.08 0.09 0.1 0.03 Proportion Rr Genotype 0.44 0.33 0.35 0.37 0.41 0.24 Proportion RR Genotype 0.38 0.62 0.57 0.54 0.49 0.73 Scenario 3 Mortality Rate: ___15____________________ Generation 0 (start) 50 100 150 200 250 Population Size 100 196 191 190 187 194 Proportion R allele 0.42 0.59 0.8 0.91 1 1 Proportion r allele 0.58 0.41 0.2 0.09 0 0 Proportion rr Genotype 0.34 0.2 0.04 0 0 0 Proportion Rr Genotype 0.47 0.41 0.33 0.18 0 0 Proportion RR Genotype 0.18 0.39 0.63 0.82 1 1 What is happening to the alleles and genotypes over generations for each scenario in this set of virtual experiments? Based on what you know about genetic drift, explain the results. Write a few sentences for each scenario.
Population Growth
R and K Selection
R and K selection are concepts in ecology used to describe traits in the fluctuation of a population or population dynamics. For example, they describe the life-association traits between parent and offspring, such as quantity or number of young ones born at a time, quality of parental care, the age to maturity, and reproductive effort.
Scenario 1 Mortality Rate: __10_____________________
Generation |
0 (start) |
50 |
100 |
150 |
200 |
250 |
|
100 |
195 |
204 |
200 |
183 |
207 |
Proportion R allele |
0.55 |
0.48 |
0.65 |
0.77 |
0.84 |
0.73 |
Proportion r allele |
0.45 |
0.52 |
0.35 |
0.23 |
0.16 |
0.28 |
Proportion rr Genotype |
0.17 |
0.29 |
0.09 |
0.06 |
0.03 |
0.06 |
Proportion Rr Genotype |
0.56 |
0.47 |
0.5 |
0.35 |
0.28 |
0.43 |
Proportion RR Genotype |
0.27 |
0.25 |
0.41 |
0.6 |
0.69 |
0.52 |
Scenario 2 Mortality Rate: ____5___________________
Generation |
0 (start) |
50 |
100 |
150 |
200 |
250 |
Population Size |
100 |
206 |
202 |
203 |
205 |
202 |
Proportion R allele |
0.57 |
0.78 |
0.74 |
0.73 |
0.69 |
0.85 |
Proportion r allele |
0.43 |
0.22 |
0.26 |
0.27 |
0.31 |
0.15 |
Proportion rr Genotype |
0.18 |
0.05 |
0.08 |
0.09 |
0.1 |
0.03 |
Proportion Rr Genotype |
0.44 |
0.33 |
0.35 |
0.37 |
0.41 |
0.24 |
Proportion RR Genotype |
0.38 |
0.62 |
0.57 |
0.54 |
0.49 |
0.73
|
Scenario 3 Mortality Rate: ___15____________________
Generation |
0 (start) |
50 |
100 |
150 |
200 |
250 |
Population Size |
100 |
196 |
191 |
190 |
187 |
194 |
Proportion R allele |
0.42 |
0.59 |
0.8 |
0.91 |
1 |
1 |
Proportion r allele |
0.58 |
0.41 |
0.2 |
0.09 |
0 |
0 |
Proportion rr Genotype |
0.34 |
0.2 |
0.04 |
0 |
0 |
0 |
Proportion Rr Genotype |
0.47 |
0.41 |
0.33 |
0.18 |
0 |
0 |
Proportion RR Genotype |
0.18 |
0.39 |
0.63 |
0.82 |
1 |
1 |
What is happening to the alleles and genotypes over generations for each scenario in this set of virtual experiments? Based on what you know about genetic drift, explain the results. Write a few sentences for each scenario.
Hardy Weinberg’s principle is the mathematical representation of population analysis which calculates the genetic variation possible in a population at equilibrium by calculating its allelic and genotypic frequencies.This principle only stands true in certain conditions that include- No mutation, no emigration/immigration, no natural selection, no evolution, no gene flow etcetera. Although all these conditions cannot be satisfied by a population still it is a useful analysis method. Hardy Weinberg equilibrium states that the genetic variation in a population will remain consistent with respect to genotype and allele frequency, from one generation to the next in the absence of disturbing circumstances
Step by step
Solved in 2 steps