Benzene at 37.8 °C is pumped through the system of Figure at the rate of 0.1515 m³/min. The reservoir is at atmospheric pressure. The gauge pressure at the end of the discharge line is 345 kN/m². The discharge line is 1.828 m above the pump, while the pump suction is 0.821 m below the level in the reservoir. The discharge line is 1.5-in. Schedule 40 steel pipe. The head friction in the suction line is 0.4066 m and in the discharge line is 4.4664 m. The mechanical efficiency of the pump is 60%. The density of benzene is 865 kg/m³ and its vapor pressure at 37.8 °C is 26.2 kN/m². a) Calculate the total power input. b) Evaluate whether the pump is suitable for this system when the pump manufacturer specifies a Net Positive Suction Head Required (NPSHR) of 3.05 m.
Benzene at 37.8 °C is pumped through the system of Figure at the rate of 0.1515 m³/min. The reservoir is at atmospheric pressure. The gauge pressure at the end of the discharge line is 345 kN/m². The discharge line is 1.828 m above the pump, while the pump suction is 0.821 m below the level in the reservoir. The discharge line is 1.5-in. Schedule 40 steel pipe. The head friction in the suction line is 0.4066 m and in the discharge line is 4.4664 m. The mechanical efficiency of the pump is 60%. The density of benzene is 865 kg/m³ and its vapor pressure at 37.8 °C is 26.2 kN/m². a) Calculate the total power input. b) Evaluate whether the pump is suitable for this system when the pump manufacturer specifies a Net Positive Suction Head Required (NPSHR) of 3.05 m.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY