Begin solving the triangle by using the Law of Sines to determine the angle B. sin A sin B a b sin 70° sin B 7 sin B = 5 5 sin 70° 7 5 sin 70° 7 There are two angles B, 0°

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
How do you get the smaller angle and bigger angle of B?
To solve the triangle using the Law of Sines, we need to determine angle \( B \).

Start by applying the Law of Sines:
\[
\frac{\sin A}{a} = \frac{\sin B}{b}
\]

Substitute the given values:
\[
\frac{\sin 70^\circ}{7} = \frac{\sin B}{5}
\]

Solve for \(\sin B\):
\[
\sin B = \frac{5 \sin 70^\circ}{7}
\]

This equation shows that there are two possible angles \( B \) where \( 0^\circ < B < 180^\circ \). Let \( B_1 \) be the smaller angle and \( B_2 \) the larger angle:
\[
B_1 \approx 42.16^\circ \quad \text{and} \quad B_2 \approx 137.84^\circ
\]

Explanation:
The text describes how to use trigonometry, specifically the Law of Sines, to find the angles in a triangle given one angle and two sides. The two possible solutions for angle \( B \) result from the sine function's property that \(\sin \theta = \sin (180^\circ - \theta)\).
Transcribed Image Text:To solve the triangle using the Law of Sines, we need to determine angle \( B \). Start by applying the Law of Sines: \[ \frac{\sin A}{a} = \frac{\sin B}{b} \] Substitute the given values: \[ \frac{\sin 70^\circ}{7} = \frac{\sin B}{5} \] Solve for \(\sin B\): \[ \sin B = \frac{5 \sin 70^\circ}{7} \] This equation shows that there are two possible angles \( B \) where \( 0^\circ < B < 180^\circ \). Let \( B_1 \) be the smaller angle and \( B_2 \) the larger angle: \[ B_1 \approx 42.16^\circ \quad \text{and} \quad B_2 \approx 137.84^\circ \] Explanation: The text describes how to use trigonometry, specifically the Law of Sines, to find the angles in a triangle given one angle and two sides. The two possible solutions for angle \( B \) result from the sine function's property that \(\sin \theta = \sin (180^\circ - \theta)\).
Expert Solution
Step 1

To explain how you get the smaller angle and bigger angle of B for the given situation.

 

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning