BE THE LINEAR TRANSFORMATIONT: R³ P3(R), GIVEN BY T(x, y, z) = (x + y) + (y −z)t + (x + z)t² + (y=x+z)t³. IF [T] = 2 1 0 -1 -1 -1 2 2 2 0 IS THE MATRIX OF T IN RELACTION TO THE BASES B = {(1, 1, 0), (0, 1, 1), (0, 0, -1)} OF R³ AND B OF P3(R), THEN 2 1 CHOOSE AN OPTION O a. B' = {1-², -1+R²₁ ²² +2²³₁ −B³}, O b. B = {1-t, t+ 2²₁ ²² +2³₁ ²³}, O c. B = {1+t+t³₁ 1+²²₂ −1+²²³ +2²³, -P}, O d. B = {1-t+t², 1+ ²²₁ ²² + ²³₂ ²³}. O e. B = {1+t, t+ P², P² + B³, − B³},

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
BE THE LINEAR TRANSFORMATIONT: R³ → → P3(R), GIVEN BY T(x, y, z) = (x + y) + (v − z)t + (x+z)t² + (y=x+z)t³.
-⠀⠀⠀
IF [T]
=
2 1 0
-1 -1 -1
IS THE MATRIX OF T IN RELACTION TO THE BASES B =
2 2 2
2 0 1
CHOOSE AN OPTION
O a. B' = {1-t², −1+1²2², 2²2² +2²³, −1³3³},
b. B = {1-t, t+t², 1² + P²³₁ ²³},
O c. B = {1+t+t³₂ t + ²², −t+²²³ +2²³, -P³},
O d. B = {1-t+t², t + 2²₂ ²²³ +2²³, 2³}.
O e. B' = {1+t, t+1²₁ 1² + 1²³₁ −1³3³},
{(1, 1, 0), (0, 1, 1), (0, 0, -1)} OF R³ AND B' OF P3(R), THEN
Transcribed Image Text:BE THE LINEAR TRANSFORMATIONT: R³ → → P3(R), GIVEN BY T(x, y, z) = (x + y) + (v − z)t + (x+z)t² + (y=x+z)t³. -⠀⠀⠀ IF [T] = 2 1 0 -1 -1 -1 IS THE MATRIX OF T IN RELACTION TO THE BASES B = 2 2 2 2 0 1 CHOOSE AN OPTION O a. B' = {1-t², −1+1²2², 2²2² +2²³, −1³3³}, b. B = {1-t, t+t², 1² + P²³₁ ²³}, O c. B = {1+t+t³₂ t + ²², −t+²²³ +2²³, -P³}, O d. B = {1-t+t², t + 2²₂ ²²³ +2²³, 2³}. O e. B' = {1+t, t+1²₁ 1² + 1²³₁ −1³3³}, {(1, 1, 0), (0, 1, 1), (0, 0, -1)} OF R³ AND B' OF P3(R), THEN
Expert Solution
steps

Step by step

Solved in 9 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,