Based on the following: i: x ≥0 ii: y ≥0 iii: z ≥0 iv: 0.5x + y + 0.2x ≥ 600 v: 2.0x + 3y + z ≤ 2000 I am confused how one gets the following coordinates from - 1#4#5: (0, 500, 500) 3#4#5: (400, 400, 0) Note: this is from system of inequalities (linear programming) Thank you

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Based on the following:
i: x ≥0
ii: y ≥0
iii: z ≥0
iv: 0.5x + y + 0.2x ≥ 600
v: 2.0x + 3y + z ≤ 2000

I am confused how one gets the following coordinates from -

1#4#5: (0, 500, 500)
3#4#5: (400, 400, 0)

Note: this is from system of inequalities (linear programming)

Thank you

TABLE 4-3
Corner
Co-ordinates
Check
0 - z+ 4y +3z
142#3
1#244
1#245
1434
1#3#5
14445
243#4
2#3#5
244#5
3#445
(0, 0, 0)
(0, 0, 3,000)
(0, 0, 2,000)
(0, 600, 0)
(0, 2,000/3, 0)
(0, 500, 500)
(1,200, 0, 0)
(1,000, 0, 0)
(2,000, 0, -2,000)
(400, 400, 0)
No
No
No
Yes
Yes
Yes
No
No
No
Yes
2,400
8,000/3
3,500
2,000*
• Indicates the minimum.
Transcribed Image Text:TABLE 4-3 Corner Co-ordinates Check 0 - z+ 4y +3z 142#3 1#244 1#245 1434 1#3#5 14445 243#4 2#3#5 244#5 3#445 (0, 0, 0) (0, 0, 3,000) (0, 0, 2,000) (0, 600, 0) (0, 2,000/3, 0) (0, 500, 500) (1,200, 0, 0) (1,000, 0, 0) (2,000, 0, -2,000) (400, 400, 0) No No No Yes Yes Yes No No No Yes 2,400 8,000/3 3,500 2,000* • Indicates the minimum.
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Finite State Machine
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,