Based on information from the Federal Highway Administration web site, the average annual miles driven per vehicle in the United States is 13.5 thousand miles. Assume ? ≈ 700 miles. Suppose that a random sample of 41 vehicles owned by residents of Chicago showed that the average mileage driven last year was 13.2 thousand miles. Would this indicate that the average miles driven per vehicle in Chicago is different from (higher or lower than) the national average? Use a 0.05 level of significance. What are we testing in this problem? (A) single proportion B) single mean (a) What is the level of significance? _________ State the null and alternate hypotheses. (A) H0: ? = 13.5; H1: ? > 13.5 (B) H0: ? = 13.5; H1: ? ≠ 13.5 (C) H0: p = 13.5; H1: p < 13.5 (D) H0: p = 13.5; H1: p > 13.5 (E) H0: p = 13.5; H1: p ≠ 13.5 (F) H0: ? = 13.5; H1: ? < 13.5 (Part b) What sampling distribution will you use? What assumptions are you making? (A) The standard normal, since we assume that x has a normal distribution with unknown ?. (B) The Student's t, since we assume that x has a normal distribution with known ?. (C) The Student's t, since we assume that x has a normal distribution with unknown ?. (D) The standard normal, since we assume that x has a normal distribution with known ?. What is the value of the sample test statistic? (Round your answer to two decimal places.) (Part c) Find (or estimate) the P-value. (A) P-value > 0.500 (B) 0.250 < P-value < 0.500 (C) 0.100 < P-value < 0.250 (D) 0.050 < P-value < 0.100 (E) 0.010 < P-value < 0.050 (F) P-value < 0.010 (Part d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level ?? (A) At the ? = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant. (B) At the ? = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant. (C) At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are statistically significant. (D) At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant. (Part e) Interpret your conclusion in the context of the application. (A) There is sufficient evidence at the 0.05 level to conclude that the miles driven per vehicle in the city differs from the national average. (B) There is insufficient evidence at the 0.05 level to conclude that the miles driven per vehicle in the city differs from the national average.
Based on information from the Federal Highway Administration web site, the average annual miles driven per vehicle in the United States is 13.5 thousand miles. Assume ? ≈ 700 miles. Suppose that a random sample of 41 vehicles owned by residents of Chicago showed that the average mileage driven last year was 13.2 thousand miles. Would this indicate that the average miles driven per vehicle in Chicago is different from (higher or lower than) the national average? Use a 0.05 level of significance. What are we testing in this problem? (A) single proportion B) single mean (a) What is the level of significance? _________ State the null and alternate hypotheses. (A) H0: ? = 13.5; H1: ? > 13.5 (B) H0: ? = 13.5; H1: ? ≠ 13.5 (C) H0: p = 13.5; H1: p < 13.5 (D) H0: p = 13.5; H1: p > 13.5 (E) H0: p = 13.5; H1: p ≠ 13.5 (F) H0: ? = 13.5; H1: ? < 13.5 (Part b) What sampling distribution will you use? What assumptions are you making? (A) The standard normal, since we assume that x has a normal distribution with unknown ?. (B) The Student's t, since we assume that x has a normal distribution with known ?. (C) The Student's t, since we assume that x has a normal distribution with unknown ?. (D) The standard normal, since we assume that x has a normal distribution with known ?. What is the value of the sample test statistic? (Round your answer to two decimal places.) (Part c) Find (or estimate) the P-value. (A) P-value > 0.500 (B) 0.250 < P-value < 0.500 (C) 0.100 < P-value < 0.250 (D) 0.050 < P-value < 0.100 (E) 0.010 < P-value < 0.050 (F) P-value < 0.010 (Part d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level ?? (A) At the ? = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant. (B) At the ? = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant. (C) At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are statistically significant. (D) At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant. (Part e) Interpret your conclusion in the context of the application. (A) There is sufficient evidence at the 0.05 level to conclude that the miles driven per vehicle in the city differs from the national average. (B) There is insufficient evidence at the 0.05 level to conclude that the miles driven per vehicle in the city differs from the national average.
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
Based on information from the Federal Highway Administration web site, the average annual miles driven per vehicle in the United States is 13.5 thousand miles. Assume ? ≈ 700 miles. Suppose that a random sample of 41 vehicles owned by residents of Chicago showed that the average mileage driven last year was 13.2 thousand miles. Would this indicate that the average miles driven per vehicle in Chicago is different from (higher or lower than) the national average? Use a 0.05 level of significance.
What are we testing in this problem?
(A) single proportion
B) single
(a) What is the level of significance?
_________
State the null and alternate hypotheses.
(Part b) What sampling distribution will you use? What assumptions are you making?
What is the value of the sample test statistic? (Round your answer to two decimal places.)
(Part c) Find (or estimate) the P-value.
(Part d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level ??
(Part e) Interpret your conclusion in the context of the application.
State the null and alternate hypotheses.
(A) H0: ? = 13.5; H1: ? > 13.5
(B) H0: ? = 13.5; H1: ? ≠ 13.5
(C) H0: p = 13.5; H1: p < 13.5
(D) H0: p = 13.5; H1: p > 13.5
(E) H0: p = 13.5; H1: p ≠ 13.5
(F) H0: ? = 13.5; H1: ? < 13.5
(Part b) What sampling distribution will you use? What assumptions are you making?
(A) The standard normal, since we assume that x has a normal distribution with unknown ?.
(B) The Student's t, since we assume that x has a normal distribution with known ?.
(C) The Student's t, since we assume that x has a normal distribution with unknown ?.
(D) The standard normal, since we assume that x has a normal distribution with known ?.
What is the value of the sample test statistic? (Round your answer to two decimal places.)
(Part c) Find (or estimate) the P-value.
(A) P-value > 0.500
(B) 0.250 < P-value < 0.500
(C) 0.100 < P-value < 0.250
(D) 0.050 < P-value < 0.100
(E) 0.010 < P-value < 0.050
(F) P-value < 0.010
(Part d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level ??
(A) At the ? = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant.
(B) At the ? = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant.
(C) At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are statistically significant.
(D) At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant.
(Part e) Interpret your conclusion in the context of the application.
(A) There is sufficient evidence at the 0.05 level to conclude that the miles driven per vehicle in the city differs from the national average.
(B) There is insufficient evidence at the 0.05 level to conclude that the miles driven per vehicle in the city differs from the national average.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Recommended textbooks for you
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman