Based in the table 1. 1) Develop a best-fit equation for the relationship between stress and strain. Employ Naïve–Gauss elimination method whenever necessary. S=______+______e + _______e2 2) Determine the coefficient of determination for the equation. R2 =_______ 3) Calculate the stress value to the most accurate value at strain value 0.53. s = _______Pa 4) The yield point is the point on a stress–strain curve that indicates the limit of elastic behaviour and the beginning of plastic behavior. In this case, the yield point occurs at a stress value of 80. Determine the corresponding strain value at the yield point. In any relevant method, use a stopping criterion of 0.05% e =_______ 5) The ultimate strength is the maximum point on the stress–strain curve. This corresponds to the maximum stress that can be sustained by a structure in tension. Compute the ultimate strength point of the polymeric material (strain value that gives maximum stress). In any relevant method, use a stopping criterion of 0.05%. e =______  and smax =______Pa 6) Determine the absolute error between the highest experimental data and the calculated maximum concentration. Error =_____%

Structural Analysis
6th Edition
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:KASSIMALI, Aslam.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Question

Based in the table 1.
1) Develop a best-fit equation for the relationship between stress and strain. Employ Naïve–Gauss elimination method whenever necessary.
S=______+______e + _______e2

2) Determine the coefficient of determination for the equation.

R2 =_______

3) Calculate the stress value to the most accurate value at strain value 0.53.
s = _______Pa

4) The yield point is the point on a stress–strain curve that indicates the limit of elastic behaviour and the beginning of plastic behavior. In this case, the yield point occurs at a stress value of 80. Determine the corresponding strain value at the yield point. In any relevant method, use a stopping criterion of 0.05%

e =_______

5) The ultimate strength is the maximum point on the stress–strain curve. This corresponds to the maximum stress that can be sustained by a structure in tension. Compute the ultimate strength point of the polymeric material (strain value that gives maximum stress). In any relevant method, use a stopping criterion of 0.05%.

e =______  and smax =______Pa

6) Determine the absolute error between the highest experimental data and the calculated maximum concentration.

Error =_____%

Table 1 shows the stress-strain data for a new polymeric material rod subjected to an axial
load. The last point is observed as the rupture point.
Table 1: Stress-strain data for new polymeric material
Strain, e
Stress, s (Pa)
(dimensionless)
32
0.1
59
0.2
75
0.3
86
0.4
104
0.5
120
0.6
129
0.7
125
0.8
114
0.9
97
Transcribed Image Text:Table 1 shows the stress-strain data for a new polymeric material rod subjected to an axial load. The last point is observed as the rupture point. Table 1: Stress-strain data for new polymeric material Strain, e Stress, s (Pa) (dimensionless) 32 0.1 59 0.2 75 0.3 86 0.4 104 0.5 120 0.6 129 0.7 125 0.8 114 0.9 97
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Knowledge Booster
Planar Stresses
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Structural Analysis
Structural Analysis
Civil Engineering
ISBN:
9781337630931
Author:
KASSIMALI, Aslam.
Publisher:
Cengage,
Structural Analysis (10th Edition)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Sustainable Energy
Sustainable Energy
Civil Engineering
ISBN:
9781337551663
Author:
DUNLAP, Richard A.
Publisher:
Cengage,
Traffic and Highway Engineering
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning