B2. Consider a quality control inspection. There are 10 products in each box, the number of defective products is randomly distributed from 0 to 2 with an equally likely possibility. When we do the open-box inspection, a product will be selected randomly from each box. If the inspected product is defective, then the whole box of products will be considered below standard and will be destroyed. a) What is the probability of a box of products that passes the acceptance? Give your answer to two decimal places. b) If a box of products passes the acceptance, what is the probability that there is no defective in this box? Give your answer to two decimal places.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
B2. Consider a quality control inspection. There are 10 products in each box, the number of
defective products is randomly distributed from 0 to 2 with an equally likely possibility.
When we do the open-box inspection, a product will be selected randomly from each box.
If the inspected product is defective, then the whole box of products will be considered
below standard and will be destroyed.
a) What is the probability of a box of products that passes the acceptance? Give your
answer to two decimal places.
b) If a box of products passes the acceptance, what is the probability that there is no
defective in this box? Give your answer to two decimal places.
0.9
1.0
1.1
TABLE A Standard Normal probabilities (continued)
Z
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9⁰
3.0
3.1
3.2
Table entry for z is the area under
the standard Normall curve to the
left of 2.
3.3.
3.4
.00
.5000
5.398
5793
.6179
.6554
.6915
.7257
.7580
7881
.8159
.8413
.8643
.8.849
.90.3.2
.9192
.9332
9452
9554
.9641
9713
.9772
9821
.9861
.9893
.9918
.9938
.995.3
.9965
.9974
.9981
9987
9990
.9993
.9995
.9997
.01
.5040
5438
.5832
.6217
.6591
.6950
.7291
.7611
.7910
.8186
.8438
.8665
.8869
9049
.9207
9345
.9463
9564
.9649
9719
.9778
.9826
.9864
.9896
.9920
.9940
.9955
.9966
.9975
.9982
9987
.9991
.9993
.9995
.9997
.02
.5080
.5478
.5871
.6255
.6628
.6985
.7324
.7642
.7939
.8212
.8461
.8686
.8888
.9066
.9222
.9357
.9474
.9573
.9656
.9726
.9783
.9830
.9868
.9898
.9922
.9941
.9956
.9967
.9976
.9982
.9987
.9991
.9994
.9995
.9997
.03
.5120
.5517
.5910
.6293
.6664
.7019
.7357
.7673
.7967
.8238
.8485
.8708
.8907
.9082
.9236
.9370
.9484
.9582
.9664
.9732
.9788
9834
.9871
.9901
.9925
.9943
.9957
.9968
.9977
.9983
Probability
.9988
.9991
9994
.9996
.9997
.04
.5160
5557
5948
.6331
.6700
-7054
.7389
.7704
.7995
-8264
.8508
.8729
.8925
_9099
.9251
9382
9495
.9591
.9671
9738
.9793
.9838
.9875
.9904
.9927
.9945
.9959
.9969
9977
.9984
-9988
.9992
.9994
.9996
.9997
.05
5199
5596
5987
.6368
.6736
.7088
.7422
.7734
.8023
.8289
.8531
.8749
.8944
9115
926.5
9394
.9505
9599
.9678
.9744
9798
.9842
9878
.9906
9929
.9946
9960
.9970
9978
.9984
.9989
.9992
9994
.9996
.9997
.06
.5239
.5636
.6026
.6406
.6772
.7123
.7454
.7764
.8051
.8315
.8554
.8770
.8962
9131
.9279
.9406
.9515
.9608
.9686
.9750
9803
.9846
.9881
.9909
.9931
.9948
.07
.5279
.5675
.6064
.6443
.6808
.7157
.7486
.7794
.8078
.8340
.8577
.8790
.89.80
.9147
.9292
9418
9525
.9616
9693
.9756
9808
.9850
.9884
.9911
.9932
.99.49
.9962
.9972
.9979
.99.8.5
.9961
.9971
9979
.9985
.9989
.9989
.9992
9992
9994
9995
.9996
.9996
.9997 .9997
.08
.5319
.5714
.6103
.6480
.6844
.7190
.7517
.7823
.8106
.8365
.8599
.8810
.8997
.9162
.9306
.9429
.9535
.9625
.96.99
.9761
.9812
.9854
.9887
.9913
.9934
.9951
.9963
.9973
.9980
.9986
.9990
.9993
.9995
.9996
.9997
.09
.5359
.5753
.6141
.6517
.6879
.7224
.7549
.7852
.8133
.8389
.8621
.8830
.9015
.9177
.9319
.9441
.9545
.9633
9706
.9767
9817
.9857
.98.90
.9916
.9936
.9952
.9964
.9974
.9981
.9986
.9990
.9993
.9995
.9997
9998
Transcribed Image Text:B2. Consider a quality control inspection. There are 10 products in each box, the number of defective products is randomly distributed from 0 to 2 with an equally likely possibility. When we do the open-box inspection, a product will be selected randomly from each box. If the inspected product is defective, then the whole box of products will be considered below standard and will be destroyed. a) What is the probability of a box of products that passes the acceptance? Give your answer to two decimal places. b) If a box of products passes the acceptance, what is the probability that there is no defective in this box? Give your answer to two decimal places. 0.9 1.0 1.1 TABLE A Standard Normal probabilities (continued) Z 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9⁰ 3.0 3.1 3.2 Table entry for z is the area under the standard Normall curve to the left of 2. 3.3. 3.4 .00 .5000 5.398 5793 .6179 .6554 .6915 .7257 .7580 7881 .8159 .8413 .8643 .8.849 .90.3.2 .9192 .9332 9452 9554 .9641 9713 .9772 9821 .9861 .9893 .9918 .9938 .995.3 .9965 .9974 .9981 9987 9990 .9993 .9995 .9997 .01 .5040 5438 .5832 .6217 .6591 .6950 .7291 .7611 .7910 .8186 .8438 .8665 .8869 9049 .9207 9345 .9463 9564 .9649 9719 .9778 .9826 .9864 .9896 .9920 .9940 .9955 .9966 .9975 .9982 9987 .9991 .9993 .9995 .9997 .02 .5080 .5478 .5871 .6255 .6628 .6985 .7324 .7642 .7939 .8212 .8461 .8686 .8888 .9066 .9222 .9357 .9474 .9573 .9656 .9726 .9783 .9830 .9868 .9898 .9922 .9941 .9956 .9967 .9976 .9982 .9987 .9991 .9994 .9995 .9997 .03 .5120 .5517 .5910 .6293 .6664 .7019 .7357 .7673 .7967 .8238 .8485 .8708 .8907 .9082 .9236 .9370 .9484 .9582 .9664 .9732 .9788 9834 .9871 .9901 .9925 .9943 .9957 .9968 .9977 .9983 Probability .9988 .9991 9994 .9996 .9997 .04 .5160 5557 5948 .6331 .6700 -7054 .7389 .7704 .7995 -8264 .8508 .8729 .8925 _9099 .9251 9382 9495 .9591 .9671 9738 .9793 .9838 .9875 .9904 .9927 .9945 .9959 .9969 9977 .9984 -9988 .9992 .9994 .9996 .9997 .05 5199 5596 5987 .6368 .6736 .7088 .7422 .7734 .8023 .8289 .8531 .8749 .8944 9115 926.5 9394 .9505 9599 .9678 .9744 9798 .9842 9878 .9906 9929 .9946 9960 .9970 9978 .9984 .9989 .9992 9994 .9996 .9997 .06 .5239 .5636 .6026 .6406 .6772 .7123 .7454 .7764 .8051 .8315 .8554 .8770 .8962 9131 .9279 .9406 .9515 .9608 .9686 .9750 9803 .9846 .9881 .9909 .9931 .9948 .07 .5279 .5675 .6064 .6443 .6808 .7157 .7486 .7794 .8078 .8340 .8577 .8790 .89.80 .9147 .9292 9418 9525 .9616 9693 .9756 9808 .9850 .9884 .9911 .9932 .99.49 .9962 .9972 .9979 .99.8.5 .9961 .9971 9979 .9985 .9989 .9989 .9992 9992 9994 9995 .9996 .9996 .9997 .9997 .08 .5319 .5714 .6103 .6480 .6844 .7190 .7517 .7823 .8106 .8365 .8599 .8810 .8997 .9162 .9306 .9429 .9535 .9625 .96.99 .9761 .9812 .9854 .9887 .9913 .9934 .9951 .9963 .9973 .9980 .9986 .9990 .9993 .9995 .9996 .9997 .09 .5359 .5753 .6141 .6517 .6879 .7224 .7549 .7852 .8133 .8389 .8621 .8830 .9015 .9177 .9319 .9441 .9545 .9633 9706 .9767 9817 .9857 .98.90 .9916 .9936 .9952 .9964 .9974 .9981 .9986 .9990 .9993 .9995 .9997 9998
TABLE B Random digits
Line
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
19223
73676
45467
52711
95592
68417
82739
60940
36009
38448
81486
59636
62568
45149
61041
14459
38167
73190
95857
35476
71487
13873
54580
71035
96746
96927
43909
15689
36759
69051
05007
68732
45740
27816
66925
08421
53645
66831
55588
12975
96767
72829
88565
62964
19687
37609
54973
00694
71546
07511
TABLE D
95034
47150
71709
38889
94007
35013
df
1
2
3
4
5
57890
72024
19365
48789
69487
88804
70206
32992
77684
26056
98532
32533
07118
55972
09984
81598
81507
09001
12149
19931
99477
14227
58984
64817
16632
55259
41807
78416
55658
44753
66812
68908
99404
13258
35964
50232
42628
88145
12633
59057
86278
05977
05233
88915
05756
99400
77558
93074
69971
15529
20807
17868
15412
18338
60513
04634
40325
75730
94322
31424
62183
04470
87664
39421
29077
95052
27102
43367
37823
36089
25330
06565
68288
87174
81194
84292
65561
18329
39100
77377
61421
40772
70708
13048
23822
97892
17797
83083
57857
66967
88737
19664
53946
41267
Table entry for p and C is the
critical value !" with probability p
lying to its right and probability C
lying between -t" and t".
t distribution critical values
28713
01927
00095
60227
91481
72765
47511
24943
39638
24697
09297
71197
03699
66280
24709
80371
70632
29669
92099
65850
14863
90908
56027
49497
71868
74192
64359
14374
22913
09517
14873
08796
33302
21337
78458
28744
47836
21558
41098
45144
96012
63408
49376
69453
95806
83401
74351
65441
68743
16853
96409
27754
32863
40011
60779
85089
81676
61790
85453
39364
00412
19352
71080
03819
73698
65103
23417
84407
58806
04266
61683
73592
55892
72719
18442
77567
40085
13352
18638
84534
04197
43165
07051
35213
11206
75592
12609
47781
43563
72321
94591
77919
61762
46109
09931
60705
47500
20903
72460
84569
12531
42648
29485
85848
53791
57067
55300
90656
46816
42006
71238
73089
22553
56202
14526
62253
26185
90785
66979
35435
47052
75186
33063
96758
35119
88741
16925
49367
54303
06489
85576
93739
93623
37741
19876
08563
15373
33586
56934
81940
65194
44575
16953
59505
02150
02384
84552
62371
27601
79367
1
42544
82425
82226
48767
17297
50211
94383
87964
83485
76688
27649
84898
11486
02938
31893
50490
41448
65956
98624
43742
62224
87136
41842
27611
62103
48409
85117
81982
00795
87201
45195
31685
18132
04312
87151
79140
98481
79177
48394
00360
50842
24870
88604
69680
43163
90597
19909
22725
45403
32337
Probability p
82853
36290
90056
52573
59335
47487
14893
18883
41979
08708
39950
45785
11776
70915
32592
61181
75532
86382
84826
11937
51025
95761
81868
91596
39244
41903
36071
87209
08727
97245
96565
97150
09547
68508
31260
92454
14592
06928
51719
02428
53372
04178
12724
00900
58636
93600
67181
53340
88692
03316
Upper-tail probability p
.25
.20 .15 .10 .05 .025 .02 .01 .005 .0025 .001 .0005
1.000 1.376 1.963 3.078 6.314 12.71 15.89 31.82 63.66 127.3 318.3 636.6
0.816 1.061 1.386 1.886 2.920 4.303 4.849 6.965 9.925 14.09 22.33 31.60
1.638 2.353 3.182 3.482 4.541 5.841 7.453 10.21 12.92
1.533 2.132 2.776 2.999
3.747 4.604 5.598 7.173 8.610
1.476 2.015 2.571
2.757 3.365 4.032 4.773 5.893 6.869
1.440 1.943 2.447
3.707 4.317 5.208 5.959
1.415 1.895 2.365
3.499 4.029 4.785 5.408
0.765 0.978 1.250
0.741 0.941 1.190
0.727 0.920 1.156
6 0.718 0.906
7
8
1.397 1.860 2.306
9
2.235
1.134
2.612 3.143
0.711 0.896 1.119
2.517 2.998
0.706 0.889 1.108
2.449 2.896 3.355 3.833 4.501 5.041
0.703 0.883 1.100 1.383 1.833 2.262 2.398 2.821 3.250 3.690 4.297 4.781
10 0.700 0.879 1.093 1.372 1.812 2.228 2.359 2.764 3.169 3.581 4.144 4.587
11 0.697 0.876 1.088 1.363 1.796 2.201 2.328 2.718 3.106 3.497 4.025 4.437
12 0.695 0.873 1.083 1.356 1.782 2.179 2.303 2.681 3.055 3.428 3.930 4.318
13 0.694 0.870 1.079 1.350 1.771 2.160 2.282 2.650 3.012 3.372 3.852 4.221
14 0.692 0.868 1.076 1.345 1.761 2.145 2.264 2.624 2.977 3.326
3.787
4.140
15 0.691 0.866 1.074 1.341 1.753 2.131 2.249 2.602 2.947 3.286 3.733 4.073
16 0.690 0.865 1.071 1.337 1.746 2.120
2.583 2.921 3.252 3.686 4.015
17 0.689 0.863 1.069 1.333 1.740 2.110 2.224 2.567 2.898 3.222 3.646 3.965
18 0.688 0.862 1.067 1.330 1.734 2.101 2.214 2.552 2.878 3.197 3.611 3.922
19 0.688 0.861 1.066 1.328 1.729 2.093 2.205 2.539
2.861 3.174 3.579 3.883
20 0.687 0.860
1.064 1.325 1.725 2.086 2.197 2.528 2.845 3.153 3.552 3.850
21 0.686 0.859 1.063 1.323 1.721 2.080 2.189 2.518 2.831 3.135 3.527 3.819
0.686 0.858 1.061 1.321 1.717 2.074 2.183 2.508 2.819 3.119 3.505 3.792
0.685 0.858 1.060 1.319 1.714 2.069 2.177 2.500 2.807 3.104 3.485 3.768
24 0.685 0.857 1.059 1.318 1.711 2.064 2.172 2.492 2.797 3.091 3.467 3.745
25 0.684 0.856 1.058 1.316 1.708 2.060 2.167 2.485 2.787 3.078 3.450
3.725
0.684 0.856 1.058 1.315 1.706 2.056 2.162 2.479 2.779 3.067 3.435 3.707
0.684 0.855 1.057 1.314 1.703 2.052 2.158 2.473 2.771 3.057 3.421 3.690
0.683 0.855 1.056 1.313 1.701 2.048 2.154 2.467 2.763 3.047 3.408 3.674
1.055 1.311 1.699 2.045 2.150 2.462 2.756 3.038 3.396 3.659
1.055 1.310 1.697 2.042 2.147 2.457 2.750 3.030 3.385 3.646
40 0.681 0.851 1.050 1.303 1.684 2.021 2.123 2.423 2.704 2.971 3.307 3.551
50 0.679 0.849 1.047 1.299 1.676 2.009 2.109 2.403 2.678 2.937 3.261 3.496
60 0.679 0.848 1.045 1.296 1.671 2.000 2.099 2.390 2.660 2.915 3.232 3.460
80 0.678 0.846 1.043 1.292
1.664 1.990 2.088 2.374 2.639
2.887 3.195 3.416
100 0.677 0.845 1.042 1.290
1.660 1.984 2.081
2.626
2.871 3.174 3.390
1000 0.675 0.842 1.037 1.282 1.646 1.962
2.056 2.330 2.581 2.813 3.098 3.300
0.674 0.841 1.036 1.282 1.645 1960
2.054 2.326 2.576 2.807 3.091 3.291
50% 60% 70% 80% 90% 95% 96%
22
23
26
27
28
29 0.683 0.854
30 0.683 0.854
2.364
98%
99% 99.5% 99,8% 99.9%
Confidence level C
Transcribed Image Text:TABLE B Random digits Line 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 19223 73676 45467 52711 95592 68417 82739 60940 36009 38448 81486 59636 62568 45149 61041 14459 38167 73190 95857 35476 71487 13873 54580 71035 96746 96927 43909 15689 36759 69051 05007 68732 45740 27816 66925 08421 53645 66831 55588 12975 96767 72829 88565 62964 19687 37609 54973 00694 71546 07511 TABLE D 95034 47150 71709 38889 94007 35013 df 1 2 3 4 5 57890 72024 19365 48789 69487 88804 70206 32992 77684 26056 98532 32533 07118 55972 09984 81598 81507 09001 12149 19931 99477 14227 58984 64817 16632 55259 41807 78416 55658 44753 66812 68908 99404 13258 35964 50232 42628 88145 12633 59057 86278 05977 05233 88915 05756 99400 77558 93074 69971 15529 20807 17868 15412 18338 60513 04634 40325 75730 94322 31424 62183 04470 87664 39421 29077 95052 27102 43367 37823 36089 25330 06565 68288 87174 81194 84292 65561 18329 39100 77377 61421 40772 70708 13048 23822 97892 17797 83083 57857 66967 88737 19664 53946 41267 Table entry for p and C is the critical value !" with probability p lying to its right and probability C lying between -t" and t". t distribution critical values 28713 01927 00095 60227 91481 72765 47511 24943 39638 24697 09297 71197 03699 66280 24709 80371 70632 29669 92099 65850 14863 90908 56027 49497 71868 74192 64359 14374 22913 09517 14873 08796 33302 21337 78458 28744 47836 21558 41098 45144 96012 63408 49376 69453 95806 83401 74351 65441 68743 16853 96409 27754 32863 40011 60779 85089 81676 61790 85453 39364 00412 19352 71080 03819 73698 65103 23417 84407 58806 04266 61683 73592 55892 72719 18442 77567 40085 13352 18638 84534 04197 43165 07051 35213 11206 75592 12609 47781 43563 72321 94591 77919 61762 46109 09931 60705 47500 20903 72460 84569 12531 42648 29485 85848 53791 57067 55300 90656 46816 42006 71238 73089 22553 56202 14526 62253 26185 90785 66979 35435 47052 75186 33063 96758 35119 88741 16925 49367 54303 06489 85576 93739 93623 37741 19876 08563 15373 33586 56934 81940 65194 44575 16953 59505 02150 02384 84552 62371 27601 79367 1 42544 82425 82226 48767 17297 50211 94383 87964 83485 76688 27649 84898 11486 02938 31893 50490 41448 65956 98624 43742 62224 87136 41842 27611 62103 48409 85117 81982 00795 87201 45195 31685 18132 04312 87151 79140 98481 79177 48394 00360 50842 24870 88604 69680 43163 90597 19909 22725 45403 32337 Probability p 82853 36290 90056 52573 59335 47487 14893 18883 41979 08708 39950 45785 11776 70915 32592 61181 75532 86382 84826 11937 51025 95761 81868 91596 39244 41903 36071 87209 08727 97245 96565 97150 09547 68508 31260 92454 14592 06928 51719 02428 53372 04178 12724 00900 58636 93600 67181 53340 88692 03316 Upper-tail probability p .25 .20 .15 .10 .05 .025 .02 .01 .005 .0025 .001 .0005 1.000 1.376 1.963 3.078 6.314 12.71 15.89 31.82 63.66 127.3 318.3 636.6 0.816 1.061 1.386 1.886 2.920 4.303 4.849 6.965 9.925 14.09 22.33 31.60 1.638 2.353 3.182 3.482 4.541 5.841 7.453 10.21 12.92 1.533 2.132 2.776 2.999 3.747 4.604 5.598 7.173 8.610 1.476 2.015 2.571 2.757 3.365 4.032 4.773 5.893 6.869 1.440 1.943 2.447 3.707 4.317 5.208 5.959 1.415 1.895 2.365 3.499 4.029 4.785 5.408 0.765 0.978 1.250 0.741 0.941 1.190 0.727 0.920 1.156 6 0.718 0.906 7 8 1.397 1.860 2.306 9 2.235 1.134 2.612 3.143 0.711 0.896 1.119 2.517 2.998 0.706 0.889 1.108 2.449 2.896 3.355 3.833 4.501 5.041 0.703 0.883 1.100 1.383 1.833 2.262 2.398 2.821 3.250 3.690 4.297 4.781 10 0.700 0.879 1.093 1.372 1.812 2.228 2.359 2.764 3.169 3.581 4.144 4.587 11 0.697 0.876 1.088 1.363 1.796 2.201 2.328 2.718 3.106 3.497 4.025 4.437 12 0.695 0.873 1.083 1.356 1.782 2.179 2.303 2.681 3.055 3.428 3.930 4.318 13 0.694 0.870 1.079 1.350 1.771 2.160 2.282 2.650 3.012 3.372 3.852 4.221 14 0.692 0.868 1.076 1.345 1.761 2.145 2.264 2.624 2.977 3.326 3.787 4.140 15 0.691 0.866 1.074 1.341 1.753 2.131 2.249 2.602 2.947 3.286 3.733 4.073 16 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015 17 0.689 0.863 1.069 1.333 1.740 2.110 2.224 2.567 2.898 3.222 3.646 3.965 18 0.688 0.862 1.067 1.330 1.734 2.101 2.214 2.552 2.878 3.197 3.611 3.922 19 0.688 0.861 1.066 1.328 1.729 2.093 2.205 2.539 2.861 3.174 3.579 3.883 20 0.687 0.860 1.064 1.325 1.725 2.086 2.197 2.528 2.845 3.153 3.552 3.850 21 0.686 0.859 1.063 1.323 1.721 2.080 2.189 2.518 2.831 3.135 3.527 3.819 0.686 0.858 1.061 1.321 1.717 2.074 2.183 2.508 2.819 3.119 3.505 3.792 0.685 0.858 1.060 1.319 1.714 2.069 2.177 2.500 2.807 3.104 3.485 3.768 24 0.685 0.857 1.059 1.318 1.711 2.064 2.172 2.492 2.797 3.091 3.467 3.745 25 0.684 0.856 1.058 1.316 1.708 2.060 2.167 2.485 2.787 3.078 3.450 3.725 0.684 0.856 1.058 1.315 1.706 2.056 2.162 2.479 2.779 3.067 3.435 3.707 0.684 0.855 1.057 1.314 1.703 2.052 2.158 2.473 2.771 3.057 3.421 3.690 0.683 0.855 1.056 1.313 1.701 2.048 2.154 2.467 2.763 3.047 3.408 3.674 1.055 1.311 1.699 2.045 2.150 2.462 2.756 3.038 3.396 3.659 1.055 1.310 1.697 2.042 2.147 2.457 2.750 3.030 3.385 3.646 40 0.681 0.851 1.050 1.303 1.684 2.021 2.123 2.423 2.704 2.971 3.307 3.551 50 0.679 0.849 1.047 1.299 1.676 2.009 2.109 2.403 2.678 2.937 3.261 3.496 60 0.679 0.848 1.045 1.296 1.671 2.000 2.099 2.390 2.660 2.915 3.232 3.460 80 0.678 0.846 1.043 1.292 1.664 1.990 2.088 2.374 2.639 2.887 3.195 3.416 100 0.677 0.845 1.042 1.290 1.660 1.984 2.081 2.626 2.871 3.174 3.390 1000 0.675 0.842 1.037 1.282 1.646 1.962 2.056 2.330 2.581 2.813 3.098 3.300 0.674 0.841 1.036 1.282 1.645 1960 2.054 2.326 2.576 2.807 3.091 3.291 50% 60% 70% 80% 90% 95% 96% 22 23 26 27 28 29 0.683 0.854 30 0.683 0.854 2.364 98% 99% 99.5% 99,8% 99.9% Confidence level C
Expert Solution
steps

Step by step

Solved in 4 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman