b. Write the third-order Taylor Series for f(x) = 2 sin(x) + x3 about xo terms up to and including the third derivative of f (x). Include your simplified third-order Taylor series approximation: f(x)Taylor =? · Hint 1: f(x)raylor = f (xo) + f'(xo)(x – xo) + f(n) (xo) O showing the f() (xo) (x – xo) 3+ + z(°x – x). f"(xo) 2! 3! (x - xo)" ... п! Hint 2: 3!=6 Hint 3: f'(x) = 2 cos(x) + 3x² f"(x) = -2sin(x) + 6x f(®)(x) = -2 cos(x) + 6 c. Use the result above to evaluate f(2)Taylor (show only four decimals) d. Calculate the true error for the Taylor Series approximation to the value at f (2) Hint 1: Using a calculator set to Radian, the true value of f (2) can be calculated as: 9.8186 Hint 2: The true error is defined as |f(x) – f(x)raylor|
b. Write the third-order Taylor Series for f(x) = 2 sin(x) + x3 about xo terms up to and including the third derivative of f (x). Include your simplified third-order Taylor series approximation: f(x)Taylor =? · Hint 1: f(x)raylor = f (xo) + f'(xo)(x – xo) + f(n) (xo) O showing the f() (xo) (x – xo) 3+ + z(°x – x). f"(xo) 2! 3! (x - xo)" ... п! Hint 2: 3!=6 Hint 3: f'(x) = 2 cos(x) + 3x² f"(x) = -2sin(x) + 6x f(®)(x) = -2 cos(x) + 6 c. Use the result above to evaluate f(2)Taylor (show only four decimals) d. Calculate the true error for the Taylor Series approximation to the value at f (2) Hint 1: Using a calculator set to Radian, the true value of f (2) can be calculated as: 9.8186 Hint 2: The true error is defined as |f(x) – f(x)raylor|
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![b. Write the third-order Taylor Series for f(x) = 2 sin(x) + x³ about x, = 0 showing the
terms up to and including the third derivative of f (x). Include your simplified third-order
Taylor series approximation: f(x)Taylor =? ·
Hint 1: f(x)raylor = f (xo) + f'(xo(x – xo) +
f(m) (xo) (x – xo)"“
%3D
f"(xo)
(x – xo)² +
f(3) (xo)
(x – xo) 3 +
2!
3!
+
п!
Hint 2: 3!=6
Hint 3: f'(x) = 2 cos(x) + 3x² f"(x) = –2sin(x) + 6x f()(x) = -2 cos(x) + 6
c. Use the result above to evaluate f(2)Taylor (show only four decimals)
d. Calculate the true error for the Taylor Series approximation to the value at f(2)
Hint 1: Using a calculator set to Radian, the true value of f (2) can be calculated as:
9.8186
Hint 2: The true error is defined as |f(x) – f(x)Taylor|](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa4784ad4-8165-4281-aae0-39e3b9559f1d%2F18863954-d3f9-4c06-8f16-626fa2efc2bd%2Fcl8bc8_processed.jpeg&w=3840&q=75)
Transcribed Image Text:b. Write the third-order Taylor Series for f(x) = 2 sin(x) + x³ about x, = 0 showing the
terms up to and including the third derivative of f (x). Include your simplified third-order
Taylor series approximation: f(x)Taylor =? ·
Hint 1: f(x)raylor = f (xo) + f'(xo(x – xo) +
f(m) (xo) (x – xo)"“
%3D
f"(xo)
(x – xo)² +
f(3) (xo)
(x – xo) 3 +
2!
3!
+
п!
Hint 2: 3!=6
Hint 3: f'(x) = 2 cos(x) + 3x² f"(x) = –2sin(x) + 6x f()(x) = -2 cos(x) + 6
c. Use the result above to evaluate f(2)Taylor (show only four decimals)
d. Calculate the true error for the Taylor Series approximation to the value at f(2)
Hint 1: Using a calculator set to Radian, the true value of f (2) can be calculated as:
9.8186
Hint 2: The true error is defined as |f(x) – f(x)Taylor|
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Answer
Step by step
Solved in 3 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)