(b). Given y=8x²°, y=0, x = 1₁ first we find the area! 8x3 A = SS dA I fox³ dydx [ [y] 8x³² dx = 8 (²x³dx =) A = 1. A = 8. 12/²7/1 Ix= 312 [#²] J you => [A=2] Now, moment of inertia about x-axis! Ix = Say²da =) S fox³yzdydx 8x3 3 ( [9³] 8x dx = 510 (x1de x9dx - 5 512 Ty = √₁₂²dA =) 3X10 moment of inertia about y-axis! youx? = 128 (2) →) Tx= 128-A 8x3 Só joz xezdydz x=1 [²x², jyye²de = 8 ('xsde [y] 8x3 xSdx 6 Iy = 8.1 ²² 1² ⇒ & = 4 8 6

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
(b). Given y=8x³, y=0, x=1
first we find the area!
A = SS dA
Lo fox³ dydx
2
8x3
=)A=
{ [y] oe' de = 8√' x³dx
['
A = 8. 12/²7/1
[A=2
Now, moment of inertia about x-axis!
Ix = Sfa²dA =) ( 18x³y2dydx
3 [19³] 8* dx = 50 (²x²+²x
8x3
x9dx
1
10
Ix= 313 [7²]
yosu
J.
you
512
3X10
Ty = √√x²dA =)
moment of inertia about y-axis!
2
[x². [yj³x³ de
L'xz
· 128 . (2) -) Tx²= 128-A
=
15
Jó
I 18x³ xzdydz
=
8 5 x 5 x
x==1
Iy = 8.1 ²7 1
6
=) Ty = // = ²/3 (2) =) | Ty= 3 A
4
3
Transcribed Image Text:(b). Given y=8x³, y=0, x=1 first we find the area! A = SS dA Lo fox³ dydx 2 8x3 =)A= { [y] oe' de = 8√' x³dx [' A = 8. 12/²7/1 [A=2 Now, moment of inertia about x-axis! Ix = Sfa²dA =) ( 18x³y2dydx 3 [19³] 8* dx = 50 (²x²+²x 8x3 x9dx 1 10 Ix= 313 [7²] yosu J. you 512 3X10 Ty = √√x²dA =) moment of inertia about y-axis! 2 [x². [yj³x³ de L'xz · 128 . (2) -) Tx²= 128-A = 15 Jó I 18x³ xzdydz = 8 5 x 5 x x==1 Iy = 8.1 ²7 1 6 =) Ty = // = ²/3 (2) =) | Ty= 3 A 4 3
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,