b. At the 0.10 level of significance, using the p-value approach to hypothesis testing, is there evidence that the population mean waiting time to check out is less than 8.89 minutes? What is the p-value for this test? (Round to four decimal places as needed.)

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Question
100%

Answer B

The waiting time to check out of a supermarket has had a population mean of 8.89 minutes. Recently, in an effort to reduce the waiting time, the supermarket has experimented with a system in which there is a single waiting line with multiple checkout servers. A sample of 60
customers was selected, and their mean waiting time to check out was 7.83 minutes with a sample standard deviation of 4.8 minutes. Complete parts (a) through (d).
Click here to view page 1 of the critical values for the t Distribution
Click here to view page 2 of the critical values for the t Distribution.
a. At the 0.10 level of significance, using the critical value approach to hypothesis testing, is there evidence that the population mean waiting time to check out is less than 8.89 minutes?
What are the null and alternative hypotheses for this test?
OA. Ho: μ≤7.83
H₁:μ> 7.83
O D. Ho: μ27.83
H₁: μ<7.83
OB. Ho: μ≤8.89
H₁: μ>8.89
C
O E. Ho: μ> 8.89
H₁: μ≤8.89
C. Ho: μ ≥8.89
H,:μ <8.89
OF. Ho: μ<7.83
H₁:μ ≥7.83
What is the test statistic for this test?
-1.7106 (Round to four decimal places as needed.)
What is the critical value for this test?
- 1.2961 (Round to four decimal places as needed.)
What is the conclusion for this test?
Since the test statistic is less than the critical value, reject Ho. There is sufficient evidence to conclude that the population mean waiting time to check out is less than 8.89 minutes.
b. At the 0.10 level of significance, using the p-value approach to hypothesis testing, is there evidence that the population mean waiting time to check out is less than 8.89 minutes?
What is the p-value for this test?
(Round to four decimal places as needed.)
Transcribed Image Text:The waiting time to check out of a supermarket has had a population mean of 8.89 minutes. Recently, in an effort to reduce the waiting time, the supermarket has experimented with a system in which there is a single waiting line with multiple checkout servers. A sample of 60 customers was selected, and their mean waiting time to check out was 7.83 minutes with a sample standard deviation of 4.8 minutes. Complete parts (a) through (d). Click here to view page 1 of the critical values for the t Distribution Click here to view page 2 of the critical values for the t Distribution. a. At the 0.10 level of significance, using the critical value approach to hypothesis testing, is there evidence that the population mean waiting time to check out is less than 8.89 minutes? What are the null and alternative hypotheses for this test? OA. Ho: μ≤7.83 H₁:μ> 7.83 O D. Ho: μ27.83 H₁: μ<7.83 OB. Ho: μ≤8.89 H₁: μ>8.89 C O E. Ho: μ> 8.89 H₁: μ≤8.89 C. Ho: μ ≥8.89 H,:μ <8.89 OF. Ho: μ<7.83 H₁:μ ≥7.83 What is the test statistic for this test? -1.7106 (Round to four decimal places as needed.) What is the critical value for this test? - 1.2961 (Round to four decimal places as needed.) What is the conclusion for this test? Since the test statistic is less than the critical value, reject Ho. There is sufficient evidence to conclude that the population mean waiting time to check out is less than 8.89 minutes. b. At the 0.10 level of significance, using the p-value approach to hypothesis testing, is there evidence that the population mean waiting time to check out is less than 8.89 minutes? What is the p-value for this test? (Round to four decimal places as needed.)
Critical Values for the t Distribution.
Critical Values of t
For a particular number of degrees of freedom, entry represents
the critical value of t corresponding to the cumulative probability
(1 − a) and a specified upper-tail area (a).
Degrees of
Freedom
1
2
3
6
7
9
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
0.75
0.25
1.0000
0.8165
0.7649
0.7407
0.7267
0.7176
0.7111
0.7064
0.7027
0.6998
0.6974
0.6955
0.6938
0.6924
0.6912
0.6901
0.6892
0.6884
0.6876
0.6870
0.6864
0.6858
0.6853
0.6848
0.6844
0.6840
0 (037
0.90
Cumulative Probabilities
0.10
3.0777
1.8856
1.6377
1.5332
1.4759
1.4398
1.4149
1.3968
1.3830
1.3722
1.3634
1.3562
1.3502
1.3450
1.3406
1.3368
1.3334
1.3304
1:3304
1.3277
1.3253
1.3232
1.3212
1.3195
1.3178
1.3163
1.3150
13137
0.95
0.975
Upper-Tail Areas
0.05
6.3138
2.9200
2.3534
2.1318
2.0150
1.9432
1.8946
1.8595
1.8331
1.8125
1.7959
1.7823
1.7709
1.7613
1.7531
1.7459
1.7396
1.7341
1.7291
1.7247
1.7207
1.7171
1.7139
1.7109
1.7081
1.7056
1.7033
0.025
12.7062
4.3027
3.1824
2.7764
2.5706
2.4469
2.3646
2.3060
2.2622
2.2281
2.2010
2.1788
2.1604
2.1448
2.1315
2.1199
2.1098
2.1009
2.0930
2.0860
2.0796
2.0739
2.0687
2.0639
2.0595
2.0555
2.05.10
0.99
0.01
31.8207
6.9646
4.5407
3.7469
3.3649
3.1427
2.9980
2.8965
2.8214
2.7638
2.7181
2.6810
2.6503
2.6245
2.6025
2.5835
2.5669
2.5524
2.5395
2.5280
2.5177
2.5083
2.4999
2.4922
2.4851
2.4786
31737
0
t
α
0.995
0.005
63.6574
9.9248
5.8409
4.6041
4.0322
3.7074
3.4995
3.3554
3.2498
3.1693
3.1058
3.0545
3.0123
2.9768
2.9467
2.9208
2.8982
2.8784
2.8609
2.8453
2.8314
2.8188
2.8073
2.7969
2.7874
2.7787
3.7707
-
X
Critical Values for the t Distribution.
D
Degrees of
Freedom
GÅ TA AHAAS JOOT SC%OR FOOD FØRS
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
0.75
0.25
0.6795
0.6794
0.6793
0.6792
0.6791
0.6791
0.6790
0.6789
0.6788
0.6787
0.6787
0.6786
0.6785
0.6785
0.6784
0.6783
0.6783
0.6782
0.6782
0.6781
0.6781
0.6780
0.6780
0.6779
0.6779
0.6778
0.6778
0.6777
0.6777
0.6776
0.6776
0.6776
0.6775
0.90
0.10
1.2991
1.2987
1.2984
1.2980
1.2977
1.2974
1.2971
1.2969
1.2966
1.2963
1.2961
1.2958
1.2956
1.2954
1.2951
1.2949
1.2947
1.2945
1.2943
1.2941
1.2939
1.2938
1.2936
1.2934
1.2933
1.2931
1.2929
1.2928
1.2926
1.2925
1.2924
1.2922
1.2921
Cumulative Probabilities
0.975
Upper-Tail Areas
0.025
2.0096
2.0086
2.0076
2.0066
2.0057
2.0049
2.0040
0.95
0.05
1.6766
1.6759
1.6753
1.6747
1.6741
1.6736
1.6730
1.6725
16720
1.6720
1.6716
1.6711
1.6706
1.6702
1.6698
1.6694
1.6690
1.6686
1.6683
1.6679
1.6676
1.6672
1.6669
1.6666
1.6663
1.6660
1.6657
1.6654
1.6652
1.6649
1.6646
1.6644
1.6641
1.6639
2.0032
2.0025
2.0025
2.0017
2.0010
2.0003
1.9996
1.9990
1.9983
1.9977
1.9971
1.9966
1.9960
1.9955
1.9949
1.9944
1.9939
1.9935
1.9930
1.9925
1.9921
1.9917
1.9913
1.9908
1.9905
1.9901
1.9897
0.99
0.01
2.4049
2.4033
2.4017
2.4002
2.3988
2.3974
2.3961
2.3948
2.3936
23936
2.3924
2.3912
2.3901
2.3890
2.3880
2.3870
2.3860
2.3851
2.3842
2.3833
2.3824
2.3816
2.3808
2.3800
2.3793
2.3785
2.3778
2.3771
2.3764
2.3758
2.3751
2.3745
2.3739
2.3733
0.995
0.005
2.6800
2.6778
2.6757
2.6737
2.6718
2.6700
2.6682
2.6665
2.6649
2.6633
2.6618
2.6603
2.6589
2.6575
2.6561
2.6549
2.6536
2.6524
2.6512
2.6501
2.6490
2.6479
2.6469
2.6459
2.6449
2.6439
2.6430
2.6421
2.6412
2.6403
2.6395
2.6387
2.6379
Transcribed Image Text:Critical Values for the t Distribution. Critical Values of t For a particular number of degrees of freedom, entry represents the critical value of t corresponding to the cumulative probability (1 − a) and a specified upper-tail area (a). Degrees of Freedom 1 2 3 6 7 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 0.75 0.25 1.0000 0.8165 0.7649 0.7407 0.7267 0.7176 0.7111 0.7064 0.7027 0.6998 0.6974 0.6955 0.6938 0.6924 0.6912 0.6901 0.6892 0.6884 0.6876 0.6870 0.6864 0.6858 0.6853 0.6848 0.6844 0.6840 0 (037 0.90 Cumulative Probabilities 0.10 3.0777 1.8856 1.6377 1.5332 1.4759 1.4398 1.4149 1.3968 1.3830 1.3722 1.3634 1.3562 1.3502 1.3450 1.3406 1.3368 1.3334 1.3304 1:3304 1.3277 1.3253 1.3232 1.3212 1.3195 1.3178 1.3163 1.3150 13137 0.95 0.975 Upper-Tail Areas 0.05 6.3138 2.9200 2.3534 2.1318 2.0150 1.9432 1.8946 1.8595 1.8331 1.8125 1.7959 1.7823 1.7709 1.7613 1.7531 1.7459 1.7396 1.7341 1.7291 1.7247 1.7207 1.7171 1.7139 1.7109 1.7081 1.7056 1.7033 0.025 12.7062 4.3027 3.1824 2.7764 2.5706 2.4469 2.3646 2.3060 2.2622 2.2281 2.2010 2.1788 2.1604 2.1448 2.1315 2.1199 2.1098 2.1009 2.0930 2.0860 2.0796 2.0739 2.0687 2.0639 2.0595 2.0555 2.05.10 0.99 0.01 31.8207 6.9646 4.5407 3.7469 3.3649 3.1427 2.9980 2.8965 2.8214 2.7638 2.7181 2.6810 2.6503 2.6245 2.6025 2.5835 2.5669 2.5524 2.5395 2.5280 2.5177 2.5083 2.4999 2.4922 2.4851 2.4786 31737 0 t α 0.995 0.005 63.6574 9.9248 5.8409 4.6041 4.0322 3.7074 3.4995 3.3554 3.2498 3.1693 3.1058 3.0545 3.0123 2.9768 2.9467 2.9208 2.8982 2.8784 2.8609 2.8453 2.8314 2.8188 2.8073 2.7969 2.7874 2.7787 3.7707 - X Critical Values for the t Distribution. D Degrees of Freedom GÅ TA AHAAS JOOT SC%OR FOOD FØRS 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 0.75 0.25 0.6795 0.6794 0.6793 0.6792 0.6791 0.6791 0.6790 0.6789 0.6788 0.6787 0.6787 0.6786 0.6785 0.6785 0.6784 0.6783 0.6783 0.6782 0.6782 0.6781 0.6781 0.6780 0.6780 0.6779 0.6779 0.6778 0.6778 0.6777 0.6777 0.6776 0.6776 0.6776 0.6775 0.90 0.10 1.2991 1.2987 1.2984 1.2980 1.2977 1.2974 1.2971 1.2969 1.2966 1.2963 1.2961 1.2958 1.2956 1.2954 1.2951 1.2949 1.2947 1.2945 1.2943 1.2941 1.2939 1.2938 1.2936 1.2934 1.2933 1.2931 1.2929 1.2928 1.2926 1.2925 1.2924 1.2922 1.2921 Cumulative Probabilities 0.975 Upper-Tail Areas 0.025 2.0096 2.0086 2.0076 2.0066 2.0057 2.0049 2.0040 0.95 0.05 1.6766 1.6759 1.6753 1.6747 1.6741 1.6736 1.6730 1.6725 16720 1.6720 1.6716 1.6711 1.6706 1.6702 1.6698 1.6694 1.6690 1.6686 1.6683 1.6679 1.6676 1.6672 1.6669 1.6666 1.6663 1.6660 1.6657 1.6654 1.6652 1.6649 1.6646 1.6644 1.6641 1.6639 2.0032 2.0025 2.0025 2.0017 2.0010 2.0003 1.9996 1.9990 1.9983 1.9977 1.9971 1.9966 1.9960 1.9955 1.9949 1.9944 1.9939 1.9935 1.9930 1.9925 1.9921 1.9917 1.9913 1.9908 1.9905 1.9901 1.9897 0.99 0.01 2.4049 2.4033 2.4017 2.4002 2.3988 2.3974 2.3961 2.3948 2.3936 23936 2.3924 2.3912 2.3901 2.3890 2.3880 2.3870 2.3860 2.3851 2.3842 2.3833 2.3824 2.3816 2.3808 2.3800 2.3793 2.3785 2.3778 2.3771 2.3764 2.3758 2.3751 2.3745 2.3739 2.3733 0.995 0.005 2.6800 2.6778 2.6757 2.6737 2.6718 2.6700 2.6682 2.6665 2.6649 2.6633 2.6618 2.6603 2.6589 2.6575 2.6561 2.6549 2.6536 2.6524 2.6512 2.6501 2.6490 2.6479 2.6469 2.6459 2.6449 2.6439 2.6430 2.6421 2.6412 2.6403 2.6395 2.6387 2.6379
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman