b. Assuming the mud pumps run on diesel, and assuming the pumps are 45% efficient (only 45% of the power of the fuel creates pumping power), how much fuel would this one mud pump consume per week if operating 24 hrs/day under these conditions? Assume pumps are 45% efficient, 55% of the power goes to waste, so the power needed is 1/efficiency, or
b. Assuming the mud pumps run on diesel, and assuming the pumps are 45% efficient (only 45% of the power of the fuel creates pumping power), how much fuel would this one mud pump consume per week if operating 24 hrs/day under these conditions? Assume pumps are 45% efficient, 55% of the power goes to waste, so the power needed is 1/efficiency, or
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
Related questions
Question
Question 6 part b
![6. While drilling, the mud is being circulated at 2.5 bbl/minute. The surface pressure seen at the
pumps is 2,500 psi.
Hydraulic horsepower = flow rate * Pressure = q* P
7.
a.
b.
d.
What is the hydraulic power required for the mud pump in horsepower (HP)?
Assuming the mud pumps run on diesel, and assuming the pumps are 45% efficient
(only 45% of the power of the fuel creates pumping power), how much fuel would this
one mud pump consume per week if operating 24 hrs/day under these conditions?
Assume pumps are 45% efficient, 55% of the power goes to waste, so the power needed
is 1/efficiency, or
Estimate the bottomhole pressure at 7,000 ft assuming the mud weight is 11 ppg
and a surface pressure of 2,500 psi. (the bottomhole pressure is the sum of a) the surface
pressure and b) the pressure caused by the column of mud in the wellbore)
Assuming we wanted to keep the same bottomhole pressure, we could reduce the
surface pressure by increasing the mud weight. What mud weight would be required to
reduce the surface pressure to 500 psi but still keep the same bottomhole pressure as
(c)?
A pump is pumping water at 50 gal/min; P= 70 psi. The efficiency of the pump is 0.73.
Compute the hydraulic horsepower (hp) of the pump.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe00ed4ec-538b-432d-83e8-6d11ca2082b9%2F4bbfc509-d8d0-47e4-87cc-94b92c56f416%2Fdt9ll1k_processed.jpeg&w=3840&q=75)
Transcribed Image Text:6. While drilling, the mud is being circulated at 2.5 bbl/minute. The surface pressure seen at the
pumps is 2,500 psi.
Hydraulic horsepower = flow rate * Pressure = q* P
7.
a.
b.
d.
What is the hydraulic power required for the mud pump in horsepower (HP)?
Assuming the mud pumps run on diesel, and assuming the pumps are 45% efficient
(only 45% of the power of the fuel creates pumping power), how much fuel would this
one mud pump consume per week if operating 24 hrs/day under these conditions?
Assume pumps are 45% efficient, 55% of the power goes to waste, so the power needed
is 1/efficiency, or
Estimate the bottomhole pressure at 7,000 ft assuming the mud weight is 11 ppg
and a surface pressure of 2,500 psi. (the bottomhole pressure is the sum of a) the surface
pressure and b) the pressure caused by the column of mud in the wellbore)
Assuming we wanted to keep the same bottomhole pressure, we could reduce the
surface pressure by increasing the mud weight. What mud weight would be required to
reduce the surface pressure to 500 psi but still keep the same bottomhole pressure as
(c)?
A pump is pumping water at 50 gal/min; P= 70 psi. The efficiency of the pump is 0.73.
Compute the hydraulic horsepower (hp) of the pump.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Structural Analysis](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337630931/9781337630931_smallCoverImage.jpg)
![Structural Analysis (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134610672/9780134610672_smallCoverImage.gif)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Principles of Foundation Engineering (MindTap Cou…](https://www.bartleby.com/isbn_cover_images/9781337705028/9781337705028_smallCoverImage.gif)
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
![Structural Analysis](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337630931/9781337630931_smallCoverImage.jpg)
![Structural Analysis (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134610672/9780134610672_smallCoverImage.gif)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Principles of Foundation Engineering (MindTap Cou…](https://www.bartleby.com/isbn_cover_images/9781337705028/9781337705028_smallCoverImage.gif)
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
![Fundamentals of Structural Analysis](https://www.bartleby.com/isbn_cover_images/9780073398006/9780073398006_smallCoverImage.gif)
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
![Sustainable Energy](https://www.bartleby.com/isbn_cover_images/9781337551663/9781337551663_smallCoverImage.gif)
![Traffic and Highway Engineering](https://www.bartleby.com/isbn_cover_images/9781305156241/9781305156241_smallCoverImage.jpg)
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning