(b) Use the Mean Value Theorem on the interval [0, x] for. x > 0, to show that In(1+x) < x.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Real Analysis 1- Using the 2nd photo solution as an example, solve similarly the problem 6B

6. Choose and work either (a) or (b), NOT BOTH.
(a) Let f : R? → R? be defined by f(x, y) = (x+ y,x – y). Use the definition to
prove that f is continuous at (1, –1).
(b) Use the Mean Value Theorem on the interval [0, x] for x > 0, to show that
In(1+x) < x.
Transcribed Image Text:6. Choose and work either (a) or (b), NOT BOTH. (a) Let f : R? → R? be defined by f(x, y) = (x+ y,x – y). Use the definition to prove that f is continuous at (1, –1). (b) Use the Mean Value Theorem on the interval [0, x] for x > 0, to show that In(1+x) < x.
-6-
4. For x+0, lhun
smcax- sinbx
< la-bl
Pao: let ito ke faxed and lat f: [a, b]R be
defnised
by fe0= eintx).
then frl
Com tinuny
La,6], differeukelle enl,b)
Laib),
on la,6)
a the
Mean Value Thermeum,
f(6)-f(6)-ske) where
b-a
prest
smce f'ct)=x caftx)
fl6)-fca)
4.
bna
Thus
Sinex)-Sincax)
6-a
Samlex)
- SmaxLkt
b9
or
SuiCaxt- Sm (bx)
2 lb-al-la -b
Transcribed Image Text:-6- 4. For x+0, lhun smcax- sinbx < la-bl Pao: let ito ke faxed and lat f: [a, b]R be defnised by fe0= eintx). then frl Com tinuny La,6], differeukelle enl,b) Laib), on la,6) a the Mean Value Thermeum, f(6)-f(6)-ske) where b-a prest smce f'ct)=x caftx) fl6)-fca) 4. bna Thus Sinex)-Sincax) 6-a Samlex) - SmaxLkt b9 or SuiCaxt- Sm (bx) 2 lb-al-la -b
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,