(b) Use rules of variance to obtain an expression for the variance and standard deviation (standard error) of the estimator in part (a). v(x)=√(x+vn - 0x² +0,² Identify the next step in this rule from the options below. x-5-₂²_0₂² ₁ 2 VX-1 + 2 0₂ OV--1+%2 n1 na OV--1-%2 n1 2 Since standard deviation is the square root of variance, it follows that 01 √22-9/322 n₁ 0,² 0,² 01+02 Ox-√₂ Compute the estimated standard error (in MPa). (Round your answer to three decimal places.) MPa (c) Calculate a point estimate of the ratio a/a₂ of the two standard deviations. (Round your answer to three decimal places.) 4 (d) Suppose a single beam and a single cylinder are randomly selected. Calculate a point estimate (in MPa) of the variance of the difference X - Y between beam strength and cylinder strength. (Round your answer to two decimal places.) MPa2
(b) Use rules of variance to obtain an expression for the variance and standard deviation (standard error) of the estimator in part (a). v(x)=√(x+vn - 0x² +0,² Identify the next step in this rule from the options below. x-5-₂²_0₂² ₁ 2 VX-1 + 2 0₂ OV--1+%2 n1 na OV--1-%2 n1 2 Since standard deviation is the square root of variance, it follows that 01 √22-9/322 n₁ 0,² 0,² 01+02 Ox-√₂ Compute the estimated standard error (in MPa). (Round your answer to three decimal places.) MPa (c) Calculate a point estimate of the ratio a/a₂ of the two standard deviations. (Round your answer to three decimal places.) 4 (d) Suppose a single beam and a single cylinder are randomly selected. Calculate a point estimate (in MPa) of the variance of the difference X - Y between beam strength and cylinder strength. (Round your answer to two decimal places.) MPa2
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
Can u help find the answer for b and explain d?
![The image contains a detailed explanation and steps for deriving an expression for the variance and standard deviation of an estimator, using variance rules.
---
**(b) Use rules of variance to obtain an expression for the variance and standard deviation (standard error) of the estimator in part (a):**
\[ V(\overline{X} - \overline{Y}) = V(\overline{X}) + V(\overline{Y}) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \]
Identify the next step in this rule from the options below:
- \[ V(\overline{X} - \overline{Y}) = \frac{\sigma_1^2}{n_1^2} + \frac{\sigma_2^2}{n_2^2} \]
- \[ V(\overline{X} - \overline{Y}) = \frac{\sigma_1^2}{n_1^2} + \frac{\sigma_2^2}{n_2} \]
- \[ V(\overline{X} - \overline{Y}) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \] (Selected option)
- \[ V(\overline{X} - \overline{Y}) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2^2} \]
Since standard deviation is the square root of variance, it follows that:
\[ \sigma_{\overline{X} - \overline{Y}} = \sqrt{V(\overline{X} - \overline{Y})} \]
Options for the expression:
- \[ \sigma_{\overline{X} - \overline{Y}} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \]
- \[ \sigma_{\overline{X} - \overline{Y}} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}^2} \]
- \[ \sigma_{\overline{](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F78de2526-b393-406f-b144-213aa508c7e8%2F8aee43a7-32ae-42fe-a02d-39d5551690f9%2Fkkz345g_processed.jpeg&w=3840&q=75)
Transcribed Image Text:The image contains a detailed explanation and steps for deriving an expression for the variance and standard deviation of an estimator, using variance rules.
---
**(b) Use rules of variance to obtain an expression for the variance and standard deviation (standard error) of the estimator in part (a):**
\[ V(\overline{X} - \overline{Y}) = V(\overline{X}) + V(\overline{Y}) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \]
Identify the next step in this rule from the options below:
- \[ V(\overline{X} - \overline{Y}) = \frac{\sigma_1^2}{n_1^2} + \frac{\sigma_2^2}{n_2^2} \]
- \[ V(\overline{X} - \overline{Y}) = \frac{\sigma_1^2}{n_1^2} + \frac{\sigma_2^2}{n_2} \]
- \[ V(\overline{X} - \overline{Y}) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \] (Selected option)
- \[ V(\overline{X} - \overline{Y}) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2^2} \]
Since standard deviation is the square root of variance, it follows that:
\[ \sigma_{\overline{X} - \overline{Y}} = \sqrt{V(\overline{X} - \overline{Y})} \]
Options for the expression:
- \[ \sigma_{\overline{X} - \overline{Y}} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \]
- \[ \sigma_{\overline{X} - \overline{Y}} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}^2} \]
- \[ \sigma_{\overline{
![**Educational Content on Flexural Strength Estimation**
### Data on Flexural Strength for Concrete Beams and Cylinders
#### Concrete Beams Flexural Strength (MPa)
- 5.1, 7.2, 7.3, 6.8, 6.5, 7.0, 6.3, 7.9, 9.0
- 8.4, 8.7, 7.8, 9.7, 7.4, 7.7, 8.0, 11.6, 11.3, 11.8, 10.7
#### Cylinders Strength Observations
- 6.5, 5.8, 7.8, 7.1, 7.2, 9.2, 6.6, 8.5, 7.0, 8.5
- 7.2, 8.1, 7.4, 8.5, 8.9, 9.9, 12.6, 11.2, 6.9, 11.4
### Prior Considerations for Data Analysis
- **Beam Strengths**: Denoted by X₁, ..., Xₘ
- **Cylinder Strengths**: Denoted by Y₁, ..., Yₙ
- Assume X's are a random sample from a distribution with mean μ₁ and standard deviation σ₁.
- Assume Y's are a random sample from another distribution with mean μ₂ and standard deviation σ₂.
### Analysis
#### Task (a): Demonstrate that X̄ – Ȳ is an unbiased estimator of μ₁ – μ₂
Using rules of expected value:
Options:
1. \(E(X̄ - Ȳ) = (E(X) - E(Y)) = \mu_1 + \mu_2\)
2. \(E(X̄ - Ȳ) = (E(X) - E(Y))^2 = (\mu_1 - \mu_2)\)
3. \(E(X̄ - Ȳ) = (E(X) - E(Y)) = \frac{\mu_1 - \mu_2}{nm}\)
4. **\(E(X̄ - Ȳ) = (E(X) - E(Y](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F78de2526-b393-406f-b144-213aa508c7e8%2F8aee43a7-32ae-42fe-a02d-39d5551690f9%2F3vta59e_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Educational Content on Flexural Strength Estimation**
### Data on Flexural Strength for Concrete Beams and Cylinders
#### Concrete Beams Flexural Strength (MPa)
- 5.1, 7.2, 7.3, 6.8, 6.5, 7.0, 6.3, 7.9, 9.0
- 8.4, 8.7, 7.8, 9.7, 7.4, 7.7, 8.0, 11.6, 11.3, 11.8, 10.7
#### Cylinders Strength Observations
- 6.5, 5.8, 7.8, 7.1, 7.2, 9.2, 6.6, 8.5, 7.0, 8.5
- 7.2, 8.1, 7.4, 8.5, 8.9, 9.9, 12.6, 11.2, 6.9, 11.4
### Prior Considerations for Data Analysis
- **Beam Strengths**: Denoted by X₁, ..., Xₘ
- **Cylinder Strengths**: Denoted by Y₁, ..., Yₙ
- Assume X's are a random sample from a distribution with mean μ₁ and standard deviation σ₁.
- Assume Y's are a random sample from another distribution with mean μ₂ and standard deviation σ₂.
### Analysis
#### Task (a): Demonstrate that X̄ – Ȳ is an unbiased estimator of μ₁ – μ₂
Using rules of expected value:
Options:
1. \(E(X̄ - Ȳ) = (E(X) - E(Y)) = \mu_1 + \mu_2\)
2. \(E(X̄ - Ȳ) = (E(X) - E(Y))^2 = (\mu_1 - \mu_2)\)
3. \(E(X̄ - Ȳ) = (E(X) - E(Y)) = \frac{\mu_1 - \mu_2}{nm}\)
4. **\(E(X̄ - Ȳ) = (E(X) - E(Y
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![Elementary Statistics: Picturing the World (7th E…](https://www.bartleby.com/isbn_cover_images/9780134683416/9780134683416_smallCoverImage.gif)
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
![The Basic Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319042578/9781319042578_smallCoverImage.gif)
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
![Introduction to the Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319013387/9781319013387_smallCoverImage.gif)
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman