B: Suppose T(x, y, z) = (3x − 6y +3z, x+y+z, -x). b) Using the columns of T, prove that T is bijective. Then find the matrix of the inverse of T.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Educational Problem: Linear Transformation and Inverse Matrix

#### Problem Statement:

**B:** Suppose \( T(x, y, z) = (3x - 6y + 3z, x + y + z, -x) \).

**b)** Using the columns of \( T \), prove that \( T \) is bijective. Then find the matrix of the inverse of \( T \).

#### Explanation:

1. **Define the Linear Transformation \( T(x, y, z) \):**
   The given transformation \( T \) maps a 3-dimensional vector \((x, y, z)\) to another 3-dimensional vector \((3x - 6y + 3z, x + y + z, -x) \).

2. **Matrix Representation of \( T \):**
   To represent the transformation as a matrix \( A \), express the transformed coordinates in terms of the original coordinates \((x, y, z) \):
   \[
   A \begin{bmatrix}
   x \\
   y \\
   z
   \end{bmatrix}
   = \begin{bmatrix}
   3 & -6 & 3 \\
   1 & 1 & 1 \\
   -1 & 0 & 0
   \end{bmatrix} \begin{bmatrix}
   x \\
   y \\
   z
   \end{bmatrix}
   \]

3. **Prove Bijectivity:**
   - A transformation is bijective if it is both injective (one-to-one) and surjective (onto).
   - For a linear transformation described by a matrix, it is bijective if and only if the matrix is invertible.
   - Check for invertibility by finding the determinant of matrix \( A \) and ensuring it is non-zero.
   \[
   \text{det}(A) = \begin{vmatrix}
   3 & -6 & 3 \\
   1 & 1 & 1 \\
   -1 & 0 & 0
   \end{vmatrix} = 3 \cdot \begin{vmatrix}
   1 & 1 \\
   0 & 0
   \end{vmatrix} - (-6) \cdot \begin{vmatrix}
   1 & 1 \\
   -
Transcribed Image Text:### Educational Problem: Linear Transformation and Inverse Matrix #### Problem Statement: **B:** Suppose \( T(x, y, z) = (3x - 6y + 3z, x + y + z, -x) \). **b)** Using the columns of \( T \), prove that \( T \) is bijective. Then find the matrix of the inverse of \( T \). #### Explanation: 1. **Define the Linear Transformation \( T(x, y, z) \):** The given transformation \( T \) maps a 3-dimensional vector \((x, y, z)\) to another 3-dimensional vector \((3x - 6y + 3z, x + y + z, -x) \). 2. **Matrix Representation of \( T \):** To represent the transformation as a matrix \( A \), express the transformed coordinates in terms of the original coordinates \((x, y, z) \): \[ A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 & -6 & 3 \\ 1 & 1 & 1 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \] 3. **Prove Bijectivity:** - A transformation is bijective if it is both injective (one-to-one) and surjective (onto). - For a linear transformation described by a matrix, it is bijective if and only if the matrix is invertible. - Check for invertibility by finding the determinant of matrix \( A \) and ensuring it is non-zero. \[ \text{det}(A) = \begin{vmatrix} 3 & -6 & 3 \\ 1 & 1 & 1 \\ -1 & 0 & 0 \end{vmatrix} = 3 \cdot \begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix} - (-6) \cdot \begin{vmatrix} 1 & 1 \\ -
Expert Solution
steps

Step by step

Solved in 3 steps with 5 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,