(b) P(x < 65.3) = 0.7088 (Round to four decimal places as needed.) (c) P(x2 63.4) =D(Round to four decimal places as needed.)

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Standard Normal Distribution Table (page 2)
Area
Standard Nomal Distribution
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.5000
0.5398
0.5793
0.5040
0.5438
0.5832
0.5080
0.5478
0.5871
0.6255
0.6628
0.5160
0.5557
0.5948
0.6331
0.6700
0.5319
0.5714
0.6103
0.6480
0.6844
05120
0.0
0.1
0.2
0.5517
0.5910
0.6293
0.6664
0.5199
0.5596
0.5987
0.5239
0.5636
0.6026
0.6406
0.6772
0.5279
0.5675
0.6064
0.5359
0.5753
0.6141
0.3
0.4
0.6217
0.6591
0.6368
0.6736
0.6443
0.6808
0.6517
0.6879
0.6179
0.6554
0.6950
0.7291
0.7611
0.7910
0.8186
0.6985
0.7324
0.7642
0,7939
0.8212
0.7019
0,7357
0.7673
0.7967
0.8238
0.7054
0.7389
0.7704
0.7995
0.8264
0.7123
0.7454
0.7764
0.8051
0.8315
0.7224
0,7549
0.7852
0.8133
0.8389
0.5
0.6915
0.7257
0.7580
0.7088
0.7422
0.7734
0.7157
0.7486
0.7794
0.8078
0.8340
0.7190
0,7517
0.7823
0.6
0.7
0.8
0.9
0.7881
0.8159
0.8023
0.8289
0.8106
0.8365
0.8413
0.8643
0.8849
0.9032
0.9192
0.8438
0.8665
0.8869
0.9049
0.9207
0.8461
0.8686
0.8888
0.8485
0.8708
0.8907
0.9082
0.9236
0.8508
0.8729
0.8925
0.8531
0.8749
0.8944
0.8577
0.8790
0,8980
0.9147
0.9292
0,8621
0.8830
0,90 15
0.8554
0,8770
0.8599
1.0
1.1
1.2
0.8810
0.8962
0.9131
0.9279
0.8997
1.3
1.4
0.9066
0.9222
0.9099
0.9251
0.9115
0.9265
0.9162
0.9306
0.9177
0.9319
0.9332
0.9452
0.9554
0.9641
0.9713
0.9345
0.9463
0.9564
0.9649
0.9719
0.9382
0.9495
0.9591
0.9671
0.9738
0.9394
0.9505
0.9599
0.9678
0.9744
0.9418
0.9525
0.9616
0.9429
0.9535
0.9625
0.9699
0.9761
0.9441
0.9545
0.9633
0.9706
0.9767
1.5
0.9357
0.9474
0.9573
0.9656
0.9726
0.9370
0.9484
0.9582
0.9664
0.9732
0.9406
0.9515
0.9608
0.9686
0.9750
1.6
1.7
1.8
1.9
0.9693
0.9756
0.9783
0.9830
0.9868
0.9898
0.9922
2.0
2.1
2.2
0.9772
0.9821
0.9861
0.9778
0.9826
0.9864
0,9788
0.9834
0.9871
0.9793
0.9838
0.9875
0.9798
0.9842
0.9878
0.9803
0.9846
0.9808
0.9850
0.9884
0.9812
0.9854
0.9887
0.9913
0.9934
0.9817
0.9857
0.9890
0.9881
2.3
0.9893
0.9896
0.9901
0.9904
0.9906
0.9909
0.9911
0.9932
0.9916
0.9936
2.4
0.9918
0.9920
0.9925
0.9927
0.9929
0.9931
0.9938
0.9953
0.9965
0.9945
0.9959
0.9969
0.9977
2.5
2.6
2.7
2.8
0.9940
0.9955
0.9966
0.9941
0,9956
0.9967
0,9976
0.9982
0.9943
0.9957
0.9968
0.9977
0.9983
0.9946
0.9960
0.9970
0.9978
0.9984
0.9948
0.9961
0.9971
0.9979
0.9985
0.9949
0.9962
0.9972
0.9979
0.9985
0.9951
0.9963
0.9973
0.9980
0.9986
0.9952
0.9964
0.9974
0.9974
0.9981
0.9975
0.9982
0.9981
0.9986
2.9
0.9984
0.9987
0.9991
0.9993
0.9995
0.9997
0.9988
0.9992
0.9994
0.9996
0.9989
0.9992
0.9995
0.9996
0.9990
0.9993
0.9995
0.9997
0.9998
3.0
0.9987
0.9987
0.9991
0.9994
0.9995
0.9997
0.9988
0.9989
0.9992
0.9991
0.9994
0.9996
0.9989
0.9992
0.9994
0.9996
0.9997
0.9990
0.9993
0.9995
0.9996
0,9997
3.1
0.9990
0.9993
0.9995
0.9994
0.9996
0.9997
3.2
3.3
3.4
0.9997
0.9997
0.9997
0.9997
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0,07
0.08
0.09
Print
Done
Transcribed Image Text:Standard Normal Distribution Table (page 2) Area Standard Nomal Distribution 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.5000 0.5398 0.5793 0.5040 0.5438 0.5832 0.5080 0.5478 0.5871 0.6255 0.6628 0.5160 0.5557 0.5948 0.6331 0.6700 0.5319 0.5714 0.6103 0.6480 0.6844 05120 0.0 0.1 0.2 0.5517 0.5910 0.6293 0.6664 0.5199 0.5596 0.5987 0.5239 0.5636 0.6026 0.6406 0.6772 0.5279 0.5675 0.6064 0.5359 0.5753 0.6141 0.3 0.4 0.6217 0.6591 0.6368 0.6736 0.6443 0.6808 0.6517 0.6879 0.6179 0.6554 0.6950 0.7291 0.7611 0.7910 0.8186 0.6985 0.7324 0.7642 0,7939 0.8212 0.7019 0,7357 0.7673 0.7967 0.8238 0.7054 0.7389 0.7704 0.7995 0.8264 0.7123 0.7454 0.7764 0.8051 0.8315 0.7224 0,7549 0.7852 0.8133 0.8389 0.5 0.6915 0.7257 0.7580 0.7088 0.7422 0.7734 0.7157 0.7486 0.7794 0.8078 0.8340 0.7190 0,7517 0.7823 0.6 0.7 0.8 0.9 0.7881 0.8159 0.8023 0.8289 0.8106 0.8365 0.8413 0.8643 0.8849 0.9032 0.9192 0.8438 0.8665 0.8869 0.9049 0.9207 0.8461 0.8686 0.8888 0.8485 0.8708 0.8907 0.9082 0.9236 0.8508 0.8729 0.8925 0.8531 0.8749 0.8944 0.8577 0.8790 0,8980 0.9147 0.9292 0,8621 0.8830 0,90 15 0.8554 0,8770 0.8599 1.0 1.1 1.2 0.8810 0.8962 0.9131 0.9279 0.8997 1.3 1.4 0.9066 0.9222 0.9099 0.9251 0.9115 0.9265 0.9162 0.9306 0.9177 0.9319 0.9332 0.9452 0.9554 0.9641 0.9713 0.9345 0.9463 0.9564 0.9649 0.9719 0.9382 0.9495 0.9591 0.9671 0.9738 0.9394 0.9505 0.9599 0.9678 0.9744 0.9418 0.9525 0.9616 0.9429 0.9535 0.9625 0.9699 0.9761 0.9441 0.9545 0.9633 0.9706 0.9767 1.5 0.9357 0.9474 0.9573 0.9656 0.9726 0.9370 0.9484 0.9582 0.9664 0.9732 0.9406 0.9515 0.9608 0.9686 0.9750 1.6 1.7 1.8 1.9 0.9693 0.9756 0.9783 0.9830 0.9868 0.9898 0.9922 2.0 2.1 2.2 0.9772 0.9821 0.9861 0.9778 0.9826 0.9864 0,9788 0.9834 0.9871 0.9793 0.9838 0.9875 0.9798 0.9842 0.9878 0.9803 0.9846 0.9808 0.9850 0.9884 0.9812 0.9854 0.9887 0.9913 0.9934 0.9817 0.9857 0.9890 0.9881 2.3 0.9893 0.9896 0.9901 0.9904 0.9906 0.9909 0.9911 0.9932 0.9916 0.9936 2.4 0.9918 0.9920 0.9925 0.9927 0.9929 0.9931 0.9938 0.9953 0.9965 0.9945 0.9959 0.9969 0.9977 2.5 2.6 2.7 2.8 0.9940 0.9955 0.9966 0.9941 0,9956 0.9967 0,9976 0.9982 0.9943 0.9957 0.9968 0.9977 0.9983 0.9946 0.9960 0.9970 0.9978 0.9984 0.9948 0.9961 0.9971 0.9979 0.9985 0.9949 0.9962 0.9972 0.9979 0.9985 0.9951 0.9963 0.9973 0.9980 0.9986 0.9952 0.9964 0.9974 0.9974 0.9981 0.9975 0.9982 0.9981 0.9986 2.9 0.9984 0.9987 0.9991 0.9993 0.9995 0.9997 0.9988 0.9992 0.9994 0.9996 0.9989 0.9992 0.9995 0.9996 0.9990 0.9993 0.9995 0.9997 0.9998 3.0 0.9987 0.9987 0.9991 0.9994 0.9995 0.9997 0.9988 0.9989 0.9992 0.9991 0.9994 0.9996 0.9989 0.9992 0.9994 0.9996 0.9997 0.9990 0.9993 0.9995 0.9996 0,9997 3.1 0.9990 0.9993 0.9995 0.9994 0.9996 0.9997 3.2 3.3 3.4 0.9997 0.9997 0.9997 0.9997 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0,07 0.08 0.09 Print Done
Suppose a simple random sample of size n= 10 is obtained from a population with u = 62 and o = 19.
(a) What must be true regarding the distribution of the population in order to use the normal model to compute probabilities regarding the sample mean? Assuming
the normal model can be used, describe the sampling distribution x.
(b) Assuming the normal model can be used, determine P(x< 65.3).
(c) Assuming the normal model can be used, determine P(x2 63.4).
Click here to view the standard normal distribution table (page 1).
Click here to view the standard normal distribution table (page 2).
(a) What must be true regarding the distribution of the population?
A. Since the sample size is large enough, the population distribution does not
need to be normal.
O B. There are no requirements on the shape of the distribution of the population.
O C. The population must be normally distributed and the sample size must be large.
D. The population must be normally distributed.
Assuming the normal model can be used, describe the sampling distribution x.
10
O A. Normal, with u; = 62 and o; =
V19
19
*B. Normal, with u; = 62 and o; =
V10
Xc. Normal, with u; = 62 and o; = 19
(b) P(x< 65.3) = 0.7088 (Round to four decimal places as needed.)
(c) P(x2 63.4) = (Round to four decimal places as needed.)
A Standard Normal Distribution Table (page 1)
Area
Standard Normal Distribution
0.00
0.01
0.02
0.03
0.04
0,05
0.06
0.07
0,08
0,09
-34
-33
-3.2
0.0003
0.0005
0.0007
0.0003
0.0005
0.0006
0.0003
0.0004
0.0006
0.0003
0.0004
0.0003
0.0004
0.0003
0,0004
0.0006
0.0003
0.0004
0.0005
0.0003
0.0004
0.0005
0.0002
0.0003
0.000S
0.0007
0.0010
0.0003
0.0005
0.0007
0.0010
0.0013
0.0006
0.0008
0.0012
0.0006
0.0008
0.0011
0.0008
0.0011
0.0007
0.0010
0.0009
0.0009
0.0013
0.0009
0.0012
0.0008
0.0011
-30
0.0013
-29
-28
-2.7
-26
-2.5
0.0019
0.0026
0.0035
0.0047
0.0062
0.0018
0.0025
0.0034
0.0018
0.0024
0.0033
0.0017
0.0023
0.0032
0.0016
0.0023
0.0031
0.0016
0.0022
0.0030
0.0015
0.0021
0.0029
0.0015
0.0021
0.0028
0.0014
0.0020
0.0027
0.0014
0.0019
0.0026
0.0045
0.0060
0.0044
0.0059
0.0043
0.0057
0.0040
0.0054
0.0039
0.0052
0.0038
0.0051
0.0041
0.0037
0.0049
0.0036
0.0055
0.0048
-24
-2.3
-2.2
0.0078
0.0102
0.0132
0.0170
0.0075
0.0099
0.0129
0.0166
0.0073
0.0096
0.0125
0.0082
0.0107
0.0139
0.0080
0.0104
0.0136
0.0071
0.0094
0.0069
0.0091
0.0119
0.0068
0.0089
0.0116
0.0066
0.0087
0.0113
0.0064
0.0084
0.0110
0.0122
0.0154
0.0197
-2.1
0.0179
0.0174
0.0162
0.0158
0.0150
0.0146
0.0143
-20
0.0228
0.0222
0.0217
0.0212
0.0207
0.0202
0.0192
0.0188
0.0183
0.0287
0.0359
0.0446
0.0281
0.0351
0.0436
0.0274
0.0344
0.0268
0.0336
0.0418
0.0516
0.0630
0.0262
0.0329
0.0409
0.0256
0.0322
0.0401
0.0495
0.0250
0.0314
0.0392
0.0244
0.0307
0.0384
-1.9
-1.8
-1.7
-1.6
0.0239
0.0301
0.0233
0.0294
0.0367
0.0548
0.0668
0.0427
0.0526
0.0643
0.0375
0.0465
0.0537
0.0505
0.0485
0.0594
0.0475
0.0582
0.0455
0.0559
-1.5
0.0655
0.0618
0.0606
0.0571
-14
-13
-1.2
0.0735
0.0885
0.1056
0.1251
0.1460
0.0808
0.0968
0.0793
0.0951
0.1131
0.0778
0.0764
0.0749
0.0721
0.0869
0.1038
0.0708
0.0694
0.0681
0.0934
0.1112
0.0918
0.1093
0.1292
0.1515
0.0901
0.1075
0.1271
0.1492
0.1151
0.1357
0.0853
0.1020
0.0838
0.1003
0.0823
0.0985
0.1170
-1.1
0.1335
0.1314
0.1230
0.1210
0.1423
0.1190
-10
0.1587
0.1562
0.1539
0.1446
0.1401
0.1370
0.1685
0.1949
0.1660
0.1922
-0.9
0.1841
0.1814
0.1788
0.2061
0.2358
0.2676
0.3015
0.1762
0.2033
0.1736
0.1711
0.1635
0.1894
02177
0.2483
0.2810
0.1611
0.1867
02119
0.2420
0.2090
0.2389
0.2709
0.3050
0.2005
0.2296
0.2611
0.2946
0.1977
0.2266
0.2578
0.2912
-0.7
0.2743
0.3085
0.2327
0.2643
0.2981
0.2236
0.2546
0.2877
02206
0.2514
02843
02148
0.2451
0.2776
-06
-0.5
-04
-0.3
0.3446
0.3409
0.3372
0.3745
0.4129
0.4522
0.4920
0.336
0.3707
0.4090
0.3300
0.3669
0.3264
0.3632
0.3228
0.3594
0.3974
0.3192
0.3557
0.3936
0.4325
0.4721
03156
0.3821
0.4207
0.4602
0.5000
03783
0.4168
04562
0.3520
0.3897
0.4286
0.4681
0.3121
0.3483
0.3859
0.4247
0.4641
-0.2
-0.1
0.4483
0.4880
0.4052
0.4443
0.4840
0.4013
0.4404
0.4801
0.4364
0.4761
-00
0.4960
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0,08
0.09
Transcribed Image Text:Suppose a simple random sample of size n= 10 is obtained from a population with u = 62 and o = 19. (a) What must be true regarding the distribution of the population in order to use the normal model to compute probabilities regarding the sample mean? Assuming the normal model can be used, describe the sampling distribution x. (b) Assuming the normal model can be used, determine P(x< 65.3). (c) Assuming the normal model can be used, determine P(x2 63.4). Click here to view the standard normal distribution table (page 1). Click here to view the standard normal distribution table (page 2). (a) What must be true regarding the distribution of the population? A. Since the sample size is large enough, the population distribution does not need to be normal. O B. There are no requirements on the shape of the distribution of the population. O C. The population must be normally distributed and the sample size must be large. D. The population must be normally distributed. Assuming the normal model can be used, describe the sampling distribution x. 10 O A. Normal, with u; = 62 and o; = V19 19 *B. Normal, with u; = 62 and o; = V10 Xc. Normal, with u; = 62 and o; = 19 (b) P(x< 65.3) = 0.7088 (Round to four decimal places as needed.) (c) P(x2 63.4) = (Round to four decimal places as needed.) A Standard Normal Distribution Table (page 1) Area Standard Normal Distribution 0.00 0.01 0.02 0.03 0.04 0,05 0.06 0.07 0,08 0,09 -34 -33 -3.2 0.0003 0.0005 0.0007 0.0003 0.0005 0.0006 0.0003 0.0004 0.0006 0.0003 0.0004 0.0003 0.0004 0.0003 0,0004 0.0006 0.0003 0.0004 0.0005 0.0003 0.0004 0.0005 0.0002 0.0003 0.000S 0.0007 0.0010 0.0003 0.0005 0.0007 0.0010 0.0013 0.0006 0.0008 0.0012 0.0006 0.0008 0.0011 0.0008 0.0011 0.0007 0.0010 0.0009 0.0009 0.0013 0.0009 0.0012 0.0008 0.0011 -30 0.0013 -29 -28 -2.7 -26 -2.5 0.0019 0.0026 0.0035 0.0047 0.0062 0.0018 0.0025 0.0034 0.0018 0.0024 0.0033 0.0017 0.0023 0.0032 0.0016 0.0023 0.0031 0.0016 0.0022 0.0030 0.0015 0.0021 0.0029 0.0015 0.0021 0.0028 0.0014 0.0020 0.0027 0.0014 0.0019 0.0026 0.0045 0.0060 0.0044 0.0059 0.0043 0.0057 0.0040 0.0054 0.0039 0.0052 0.0038 0.0051 0.0041 0.0037 0.0049 0.0036 0.0055 0.0048 -24 -2.3 -2.2 0.0078 0.0102 0.0132 0.0170 0.0075 0.0099 0.0129 0.0166 0.0073 0.0096 0.0125 0.0082 0.0107 0.0139 0.0080 0.0104 0.0136 0.0071 0.0094 0.0069 0.0091 0.0119 0.0068 0.0089 0.0116 0.0066 0.0087 0.0113 0.0064 0.0084 0.0110 0.0122 0.0154 0.0197 -2.1 0.0179 0.0174 0.0162 0.0158 0.0150 0.0146 0.0143 -20 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0192 0.0188 0.0183 0.0287 0.0359 0.0446 0.0281 0.0351 0.0436 0.0274 0.0344 0.0268 0.0336 0.0418 0.0516 0.0630 0.0262 0.0329 0.0409 0.0256 0.0322 0.0401 0.0495 0.0250 0.0314 0.0392 0.0244 0.0307 0.0384 -1.9 -1.8 -1.7 -1.6 0.0239 0.0301 0.0233 0.0294 0.0367 0.0548 0.0668 0.0427 0.0526 0.0643 0.0375 0.0465 0.0537 0.0505 0.0485 0.0594 0.0475 0.0582 0.0455 0.0559 -1.5 0.0655 0.0618 0.0606 0.0571 -14 -13 -1.2 0.0735 0.0885 0.1056 0.1251 0.1460 0.0808 0.0968 0.0793 0.0951 0.1131 0.0778 0.0764 0.0749 0.0721 0.0869 0.1038 0.0708 0.0694 0.0681 0.0934 0.1112 0.0918 0.1093 0.1292 0.1515 0.0901 0.1075 0.1271 0.1492 0.1151 0.1357 0.0853 0.1020 0.0838 0.1003 0.0823 0.0985 0.1170 -1.1 0.1335 0.1314 0.1230 0.1210 0.1423 0.1190 -10 0.1587 0.1562 0.1539 0.1446 0.1401 0.1370 0.1685 0.1949 0.1660 0.1922 -0.9 0.1841 0.1814 0.1788 0.2061 0.2358 0.2676 0.3015 0.1762 0.2033 0.1736 0.1711 0.1635 0.1894 02177 0.2483 0.2810 0.1611 0.1867 02119 0.2420 0.2090 0.2389 0.2709 0.3050 0.2005 0.2296 0.2611 0.2946 0.1977 0.2266 0.2578 0.2912 -0.7 0.2743 0.3085 0.2327 0.2643 0.2981 0.2236 0.2546 0.2877 02206 0.2514 02843 02148 0.2451 0.2776 -06 -0.5 -04 -0.3 0.3446 0.3409 0.3372 0.3745 0.4129 0.4522 0.4920 0.336 0.3707 0.4090 0.3300 0.3669 0.3264 0.3632 0.3228 0.3594 0.3974 0.3192 0.3557 0.3936 0.4325 0.4721 03156 0.3821 0.4207 0.4602 0.5000 03783 0.4168 04562 0.3520 0.3897 0.4286 0.4681 0.3121 0.3483 0.3859 0.4247 0.4641 -0.2 -0.1 0.4483 0.4880 0.4052 0.4443 0.4840 0.4013 0.4404 0.4801 0.4364 0.4761 -00 0.4960 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0,08 0.09
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Indefinite Integral
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman