(b) Prove that lim,→20,¤€A ƒ (x) exists and is equal to lim→0 Yk-
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Please solve 5(b)
![#5 Let (fk)kEN be a sequence of functions from A C R™ to R" which converges uniformly on A
lim,>xo,¤€A ƒk(x) exists for all k E N.
Prove that (yk)kEN is a Cauchy sequence in R". (First prove that for all e > 0,
to f : A → R". Let xo E A' and suppose that yk :=
(a)
there exists N EN such that || fk(x) – fi(x)|| < e for all k, l > N and x E A. Then
notice that ||Yk – Yı|| < ||Yk – fr(x)|| + || fr(x) – fi(x)||+ ||fi(x) – yı||-)
(b)
Prove that limg→x0,¤€A ƒ(x) exists and is equal to lim 00 Yk-](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fc1e46184-5bb3-4339-852b-bb3ef2e0784b%2F4a512161-ad7b-43f3-814b-480fd1163976%2Fc7zy0wd_processed.png&w=3840&q=75)
Transcribed Image Text:#5 Let (fk)kEN be a sequence of functions from A C R™ to R" which converges uniformly on A
lim,>xo,¤€A ƒk(x) exists for all k E N.
Prove that (yk)kEN is a Cauchy sequence in R". (First prove that for all e > 0,
to f : A → R". Let xo E A' and suppose that yk :=
(a)
there exists N EN such that || fk(x) – fi(x)|| < e for all k, l > N and x E A. Then
notice that ||Yk – Yı|| < ||Yk – fr(x)|| + || fr(x) – fi(x)||+ ||fi(x) – yı||-)
(b)
Prove that limg→x0,¤€A ƒ(x) exists and is equal to lim 00 Yk-
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)