(b) lim a,b, =-00 %3D
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
#76 part b

Transcribed Image Text:## Convergence of Sequences and Series
### Section Problems:
**Problem 76:**
Suppose \(\lim_{n \to \infty} a_n = \infty\) and \(\lim_{n \to \infty} b_n = -\infty\) and \(\alpha \in \mathbb{R}\). Prove or give a counterexample:
- (a) \(\lim_{n \to \infty} (a_n + b_n) = \infty\)
- (b) \(\lim_{n \to \infty} (a_n b_n) = -\infty\)
- (c) \(\lim_{n \to \infty} (\alpha a_n) = \infty\)
- (d) \(\lim_{n \to \infty} (a_n b_n) = -\infty\)
Finally, a sequence can diverge in other ways as the following problem displays.
**Problem 77:**
Show that each of the following sequences diverge.
- (a) \(((-1)^n)_{n=1}^{\infty}\)
- (b) \(((-1)^{n^2})_{n=1}^{\infty}\)
- (c) \(a_n = \begin{cases}
1 & \text{if } n = 2^p \text{ for some } p \in \mathbb{N} \\
\frac{1}{n} & \text{otherwise}
\end{cases}\)
**Problem 78:**
Suppose that \((a_n)_{n=1}^{\infty}\) diverges but not to infinity and that \(\alpha\) is a real number. What conditions on \(\alpha\) will guarantee that:
- (a) \((\alpha a_n)_{n=1}^{\infty}\) converges?
- (b) \((\alpha a_n)_{n=1}^{\infty}\) diverges?
**Problem 79:**
Show that if \(|r| > 1\) then \((r^n)_{n=1}^{\infty}\) diverges. Will it diverge to infinity?
### Additional Problems:
**Problem 80:**
Prove that if \(\lim_{n \
Expert Solution

Step 1
Please check the answer in next step
Step by step
Solved in 3 steps with 2 images

Similar questions
Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

