(b) For ($(t) = (ýdı yöu). let y^² = 4²" + c₂us →di y" (0) = (6) >> So you = ( 2 Sintl) + (os (t) sin(t) let y ¹¹ = π u ² + ₂ um (29 + 4) = (6) => ( ₂² + 4) = ( 9 ) दे 5 sült) yai = (Costt) - 2 sin (6), (t) = So you =( Then y (0) = (i) {} 25m(t) + cos(1) Sin(t) → -5 Sin(t) 2₁ = 1 2₂=-2. Cos(t)-25mm(t) C₁=0 { " 6₂=1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Can someone explain part b of this question? Thank you... 

(b)
For ($(t) = (ýdı yöu). let y^² = 4²" + c₂us
→di
y" (0) = (6) >>
24
(29+ (2)=(!) → { (100
(₂=1
2 Sintl) + (os (t)
sin(t)
let y ¹¹ = π u ² + ₂ um
So
you = (
=> ( ₂² + 4) = ( 9 )
दे
5 sült)
yai = (Costt) - 2 sin (6),
(t) =
So you =(
Then
y (0) = (i)
{}
2₁ = 1
2₂=-2.
25m(t) + cos(1)
Sin(t)
-5 Sin(t)
Cos(t)-25mm(t)
Transcribed Image Text:(b) For ($(t) = (ýdı yöu). let y^² = 4²" + c₂us →di y" (0) = (6) >> 24 (29+ (2)=(!) → { (100 (₂=1 2 Sintl) + (os (t) sin(t) let y ¹¹ = π u ² + ₂ um So you = ( => ( ₂² + 4) = ( 9 ) दे 5 sült) yai = (Costt) - 2 sin (6), (t) = So you =( Then y (0) = (i) {} 2₁ = 1 2₂=-2. 25m(t) + cos(1) Sin(t) -5 Sin(t) Cos(t)-25mm(t)
Example.
Consider
(a) Find a
(b)
x² = (²-5) x
-2
fundamental matrix. //(t).
| ye(o)= (y)
Find the special fundamental matrix $(t)= exp(At).
(That is
Qlo) = I ).
Transcribed Image Text:Example. Consider (a) Find a (b) x² = (²-5) x -2 fundamental matrix. //(t). | ye(o)= (y) Find the special fundamental matrix $(t)= exp(At). (That is Qlo) = I ).
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,