b) Find constants a and b for which the inverse Laplace transform of s-1 F(s) = ²+2s+5 is f(t) = e¯¹ (a cos 2t + b sin 2t), t ≥ 0. c) Using the result in b) solve the differential equation:- d²y dt² dy when y(0) = 1 and (0) = -3. dt dy dt + 5y = 0,
b) Find constants a and b for which the inverse Laplace transform of s-1 F(s) = ²+2s+5 is f(t) = e¯¹ (a cos 2t + b sin 2t), t ≥ 0. c) Using the result in b) solve the differential equation:- d²y dt² dy when y(0) = 1 and (0) = -3. dt dy dt + 5y = 0,
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
part B and C
![a) Using the first shift theorem, when necessary (see below for a statement)
write down the Laplace transforms of:-
i. f₁(t) = -5e-³t, t≥ 0,
ii. f₂(t) = e-³tt, t≥0,
and hence find the Laplace transform of:
g(t) = (2t - 5)e-3t, t≥ 0.
b) Find constants a and b for which the inverse Laplace transform of
S
1
s²+2s+5
F(s)
=
is f(t) = e-t (a cos 2t + b sin 2t), t ≥ 0.
c) Using the result in b) solve the differential equation:-
d²y dy
+2 + 5y = 0,
dt² dt
when y(0) = 1 and (0)
dy
dt
=
-3.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F8a7f7113-0b3f-40a1-8d39-8324bf9c1496%2F1fc07a5d-4197-4328-a5d2-c066794c285d%2Fx5o7jeq_processed.png&w=3840&q=75)
Transcribed Image Text:a) Using the first shift theorem, when necessary (see below for a statement)
write down the Laplace transforms of:-
i. f₁(t) = -5e-³t, t≥ 0,
ii. f₂(t) = e-³tt, t≥0,
and hence find the Laplace transform of:
g(t) = (2t - 5)e-3t, t≥ 0.
b) Find constants a and b for which the inverse Laplace transform of
S
1
s²+2s+5
F(s)
=
is f(t) = e-t (a cos 2t + b sin 2t), t ≥ 0.
c) Using the result in b) solve the differential equation:-
d²y dy
+2 + 5y = 0,
dt² dt
when y(0) = 1 and (0)
dy
dt
=
-3.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 7 steps with 7 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)