(b) Figure 2.1 shows a double-pipe heat exchanger is constructed of a stainless steel (k =15.1 W/m.°C) inner tube of inner diameter D; = 1.5 cm and outer diameter Do = 1.9 cm and an outer shell of inner diameter 3.2cm. The convection heat transfer coefficient is given to be hi = 800 W/m².°C on the inner surface of the tube and ho = 1200 W/m².°C on the outer surface. For a fouling factor of Rf, i = 0.0004 m².°C/W on the tube side and Rf, 0 = 0.0001 m².°C/W on the shell side. Given the length of the tube is 10 m. [Rajah 5.1 menunjukkan penukar haba dua paip dibina daripada keluli tahan karat (k =15.1 W/m.°C) tiub dalam diameter dalam Dị = 1.5 cm dan diameter luar D, = 1.9 cm dan kelompang luar diameter dalam 3.2 cm. Pekali pemindahan haba perolakan diberi sebagai h; = 800 W/m².°C pada permukaan dalam tiub dan ho = 1200 W/m2-°C pada permukaan luar. Untuk faktor kotoran Rf, i = 0.0004 m².ºC/W pada bahagian tiub dan Rf 0 = 0.0001 m²?.°C/W pada bahagian kelompang. Diberi panjang tiub itu ialah 10 m.] (i) Calculate the lateral surface area of the inner and outer tube. [Kirakan luas permukaan sisi tiub dalam dan luar.] (ii) Determine the thermal resistance of the heat exchanger per unit length. [Tentukan rintangan haba penukar haba per unit panjang.] Cold fluid Cold fluid Hot fluid Outer layer of fouling - Tube wall - Inner layer of fouling Inner surface of tube Hot fluid Outer surface of tube Figure 2.1
(b) Figure 2.1 shows a double-pipe heat exchanger is constructed of a stainless steel (k =15.1 W/m.°C) inner tube of inner diameter D; = 1.5 cm and outer diameter Do = 1.9 cm and an outer shell of inner diameter 3.2cm. The convection heat transfer coefficient is given to be hi = 800 W/m².°C on the inner surface of the tube and ho = 1200 W/m².°C on the outer surface. For a fouling factor of Rf, i = 0.0004 m².°C/W on the tube side and Rf, 0 = 0.0001 m².°C/W on the shell side. Given the length of the tube is 10 m. [Rajah 5.1 menunjukkan penukar haba dua paip dibina daripada keluli tahan karat (k =15.1 W/m.°C) tiub dalam diameter dalam Dị = 1.5 cm dan diameter luar D, = 1.9 cm dan kelompang luar diameter dalam 3.2 cm. Pekali pemindahan haba perolakan diberi sebagai h; = 800 W/m².°C pada permukaan dalam tiub dan ho = 1200 W/m2-°C pada permukaan luar. Untuk faktor kotoran Rf, i = 0.0004 m².ºC/W pada bahagian tiub dan Rf 0 = 0.0001 m²?.°C/W pada bahagian kelompang. Diberi panjang tiub itu ialah 10 m.] (i) Calculate the lateral surface area of the inner and outer tube. [Kirakan luas permukaan sisi tiub dalam dan luar.] (ii) Determine the thermal resistance of the heat exchanger per unit length. [Tentukan rintangan haba penukar haba per unit panjang.] Cold fluid Cold fluid Hot fluid Outer layer of fouling - Tube wall - Inner layer of fouling Inner surface of tube Hot fluid Outer surface of tube Figure 2.1
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
HEAT TRANSFER SUBJECT
![(b)
Figure 2.1 shows a double-pipe heat exchanger is constructed of a stainless steel (k
=15.1 W/m.°C) inner tube of inner diameter D; = 1.5 cm and outer diameter Do = 1.9
cm and an outer shell of inner diameter 3.2cm. The convection heat transfer coefficient
is given to be h; = 800 W/m².°C on the inner surface of the tube and ho = 1200 W/m²-°C
on the outer surface. For a fouling factor of Rf, i = 0.0004 m?.°C/W on the tube side and
Rf.0 = 0.0001 m².°C/W on the shell side. Given the length of the tube is 10 m.
[Rajah 5.1 menunjukkan penukar haba dua paip dibina daripada keluli tahan karat (k =15.1 W/m.°C)
tiub dalam diameter dalam D; = 1.5 cm dan diameter luar D. = 1.9 cm dan kelompang luar diameter
dalam 3.2 cm. Pekali pemindahan haba perolakan diberi sebagai h; = 800 W/m?.°C pada permukaan
dalam tiub dan ho = 1200 W/m2-°C pada permukaan luar. Untuk faktor kotoran Rf, i = 0.0004 m².ºC/W
pada bahagian tiub dan Rf.0 = 0.0001 m².ºC/W pada bahagian kelompang. Diberi panjang tiub itu ialah
10 m.]
(i) Calculate the lateral surface area of the inner and outer tube.
[Kirakan luas permukaan sisi tiub dalam dan luar.]
(ii) Determine the thermal resistance of the heat exchanger per unit length.
[Tentukan rintangan haba penukar haba per unit panjang.]
Cold fluid
Cold fluid
Hot
Outer layer of fouling
fluid
-Tube wall
Inner layer of fouling
Inner surface of tube
Hot
fluid
Outer surface of tube
Figure 2.1](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fdb01d844-fd23-484b-ae0c-8e8c4aa81434%2F4c400876-31a1-4dc7-9927-95626bf0ed10%2Fe30c0ah_processed.png&w=3840&q=75)
Transcribed Image Text:(b)
Figure 2.1 shows a double-pipe heat exchanger is constructed of a stainless steel (k
=15.1 W/m.°C) inner tube of inner diameter D; = 1.5 cm and outer diameter Do = 1.9
cm and an outer shell of inner diameter 3.2cm. The convection heat transfer coefficient
is given to be h; = 800 W/m².°C on the inner surface of the tube and ho = 1200 W/m²-°C
on the outer surface. For a fouling factor of Rf, i = 0.0004 m?.°C/W on the tube side and
Rf.0 = 0.0001 m².°C/W on the shell side. Given the length of the tube is 10 m.
[Rajah 5.1 menunjukkan penukar haba dua paip dibina daripada keluli tahan karat (k =15.1 W/m.°C)
tiub dalam diameter dalam D; = 1.5 cm dan diameter luar D. = 1.9 cm dan kelompang luar diameter
dalam 3.2 cm. Pekali pemindahan haba perolakan diberi sebagai h; = 800 W/m?.°C pada permukaan
dalam tiub dan ho = 1200 W/m2-°C pada permukaan luar. Untuk faktor kotoran Rf, i = 0.0004 m².ºC/W
pada bahagian tiub dan Rf.0 = 0.0001 m².ºC/W pada bahagian kelompang. Diberi panjang tiub itu ialah
10 m.]
(i) Calculate the lateral surface area of the inner and outer tube.
[Kirakan luas permukaan sisi tiub dalam dan luar.]
(ii) Determine the thermal resistance of the heat exchanger per unit length.
[Tentukan rintangan haba penukar haba per unit panjang.]
Cold fluid
Cold fluid
Hot
Outer layer of fouling
fluid
-Tube wall
Inner layer of fouling
Inner surface of tube
Hot
fluid
Outer surface of tube
Figure 2.1
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY