(b) Defined f(x) = > an sin nx = a1 sin x + a2 sin 2x + .. .aN sin Nr, %3D n=1 where N is a positive integer and a1, a2, ....., ayas a constant. Use part (a) to show that 1 am sin mx dx | for m=1, 2,.,N . [Hint: Use integral linear property]

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

DO PART B ONLY!
THANKS IN ADVANCE

(a) Let m and n be positive integers. Show that
if
m = n,
sin mx sin nx dx =
0 if
m + n.
(b) Defined
N
f (x) = > an sin na a1 sin x + a2 sin 2x +...aN sin Na,
%3D
n=1
where N is a positive integer and a,, a2, ...., ayas a constant. Use part (a) to show that
f(x)
ат
sin mx
dx
-
T
for m=1, 2,.,N . [Hint: Use integral linear property]
Transcribed Image Text:(a) Let m and n be positive integers. Show that if m = n, sin mx sin nx dx = 0 if m + n. (b) Defined N f (x) = > an sin na a1 sin x + a2 sin 2x +...aN sin Na, %3D n=1 where N is a positive integer and a,, a2, ...., ayas a constant. Use part (a) to show that f(x) ат sin mx dx - T for m=1, 2,.,N . [Hint: Use integral linear property]
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,