b) Compute Re fli) when : f(2)= √Z - 1² and f(0) = -i c) Which of the following functions are analytic in 1Z1 < 2 and /or IZ ) > 2: i) 2-√√24-42² iii) 2²+6Z+9 ii) Z²-1 Z-√Z²44 √√2²³² +22+2 zt-42 + 3
b) Compute Re fli) when : f(2)= √Z - 1² and f(0) = -i c) Which of the following functions are analytic in 1Z1 < 2 and /or IZ ) > 2: i) 2-√√24-42² iii) 2²+6Z+9 ii) Z²-1 Z-√Z²44 √√2²³² +22+2 zt-42 + 3
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
2b
c(iii)
![1) a) Prove that f(Z) = 3x+y+i (3y-x) is analytic in
namely: entire
b) Prove that if f(z) and f(z) are analytic in a
domain R, then I is a constant function.
c) Prove that if f(z) is analytic and purely imaginary
in a domain №, then f is a constant function
2) a) Find all the branch points and all the discontinuity
points for the following functions:
ii) f(z)= √ (Z+8) ³ (2z - 4) 5
i) f(t) = 3-3√√√2+1
1+ √Z-1
iii) f(z) =
Z+Z-4
--√√22+5
b) Compute Re fli) when: $(2) = √2-1² and f(0)= -i
c) Which of the following functions are analytic in 1Z1 < 2
and /or
IZ 1 > 2:
i) 2-√√24-42²
iii)
2²+62+9
ii)
2²1
Z-√Z+4
√2²2² +2Z+9
z2-42 + 3](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9b030cd5-5424-4c4c-9fb9-bb5124dfa56d%2F4107fbab-93cc-4360-9697-a92da2933383%2Fvi7guh_processed.jpeg&w=3840&q=75)
Transcribed Image Text:1) a) Prove that f(Z) = 3x+y+i (3y-x) is analytic in
namely: entire
b) Prove that if f(z) and f(z) are analytic in a
domain R, then I is a constant function.
c) Prove that if f(z) is analytic and purely imaginary
in a domain №, then f is a constant function
2) a) Find all the branch points and all the discontinuity
points for the following functions:
ii) f(z)= √ (Z+8) ³ (2z - 4) 5
i) f(t) = 3-3√√√2+1
1+ √Z-1
iii) f(z) =
Z+Z-4
--√√22+5
b) Compute Re fli) when: $(2) = √2-1² and f(0)= -i
c) Which of the following functions are analytic in 1Z1 < 2
and /or
IZ 1 > 2:
i) 2-√√24-42²
iii)
2²+62+9
ii)
2²1
Z-√Z+4
√2²2² +2Z+9
z2-42 + 3
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)