(b) Between 30 and 40 chips are defective 2B The number of flaws in bolts of cloth in textile manufacturing is assumed to be Poisson distributed with a mean of 0.2 flaw per square meter. (Write your answers, do not try to compute or simplify the result) (a) What is the probability that there is one flaw in one square meter of cloth? (b) What is the probability that there is one flaw in 20 square meters of cloth? (c) What is the probability that there are no flaws in 10 square meters of cloth? (d) What is the probability that there are at least two flaws in 20 square meters of cloth?

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Cumulative Standard Normal Distribution
$(z)= [
2.0
2.1
ساس
1
√2π
3.6
3.7
3.8
3.9
du
Z
0.00
0.01
0.02
0.03
0.04
0.51595
0.55567
0.2
0.3
0.4
0.5
0.79389
0.79673
1.1
1.2
1.3
1.7
0.95543
1.8
0.96407
0.96485
0.0 0.50000 0.50399 0.50798 0.51197
0.1 0.53983 0.54379 0.54776 0.55172
0.57926 0.58317 0.58706 0.59095 0.59483
0.61791 0.62172 0.62551 0.62930 0.63307
0.65542 0.65910 0.62276 0.66640 0.67003
0.69146 0.69497 0.69847 0.70194 0.70540
0.6 0.72575 0.72907 0.73237 0.73565 0.73891
0.7 0.75803 0.76115 0.76424 0.76730 0.77035
0.8 0.78814 0.79103
0.79954
0.9 0.81594 0.81859 0.82121 0.82381 0.82639
1.0 0.84134 0.84375 0.84613 0.84849 0.85083
0.86433 0.86650 0.86864 0.87076 0.87285
0.88493 0.88686 0.88877 0.89065 0.89251
0.90320 0.90490 0.90658 0.90824 0.90988
1.4 0.91924 0.92073 0.92219 0.92364 0.92506
1.5 0.93319 0.93448 0.93574 0.93699 0.93822
1.6
0.94520 0.94630 0.94738 0.94845 0.94950
0.95637 0.95728 0.95818 0.95907
0.96637
0.96562
0.96711
0.97320 0.97381
0.97725 0.97778 0.97831 0.97882 0.97932
0.98214 0.98257 0.98300 0.98341 0.98382
0.98610 0.98645 0.98679 0.98713 0.98745
2.3 0.98928 0.98956 0.98983 0.99010 0.99036
2.4 0.99180 0.99202 0.99224 0.99245 0.99266
0.99413 0.99430
0.99379 0.99396
0.99446
2.5
0.99573 0.99585
0.99560
0.99534 0.99547
2.7 0.99653 0.99664 0.99674 0.99683 0.99693
2.8 0.99744 0.99752 0.99760 0.99767 0.99774
2.9 0.99813 0.99819 0.99825 0.99831 0.99836
3.0 0.99865 0.99869 0.99874 0.99878 0.99882
3.1 0.99903 0.99906 0.99910 0.99913 0.99916
3.2 0.99931 0.99934 0.99936 0.99938 0.99940
3.3 0.99952 0.99953 0.99955 0.99957 0.99958
3.4 0.99966 0.99968
0.99970
0.99969
0.99971
0.99980
0.99977 0.99978 0.99978 0.99979
0.99984 0.99985 0.99985 0.99986 0.99986
0.99989 0.99990
0.97128
0.97193 0.97257
2.2
2.6
3.5
0.99990 0.99990
0.99991
0.99993 0.99993 0.99993 0.99994 0.99994
0.99995 0.99995 0.99996 0.99996 0.99996
0
2
■ APPENDIX II
Cumulative Standard Normal Distribution (continued)
(z)=L
√√2n
du
z
0.05
0.06
Z
0.07
0.08
0.09
0.0 0.51994 0.52392 0.52790 0.53188 0.53586 0.0
0.1 0.55962 0.56356 0.56749 0.57142 0.57534 0.1
0.2 0.59871 0.60257 0.60642
0.61409
0.61026
0.2
0.3
0.64431 0.64803
0.63683
0.65173
0.64058
0.3
0.4 0.67364 0.67724 0.68082 0.68438 0.68793 0.4
0.5 0.70884 0.71226 0.71566 0.71904 0.72240 0.5
0.6 0.74215 0.74537 0.74857 0.75175
0.6
0.75490
0.77337 0.77637
0.7
0.77935 0.78230 0.78523 0.7
0.8
0.80510
0.80234
0.80785
0.81327
0.81057
0.8
0.9
0.83147
0.82894
0.83397
0.83891
0.83646
0.9
1.0
0.86214
1.0 0.85314 0.85543 0.85769 0.85993
1.1
0.87900 0.88100 0.88297
1.1 0.87493
0.87697
1.2
1.2
0.89616
0.89435
0.89796 0.89973 0.90147
1.3
0.91308
0.91149
0.91465
0.91773
0.91621
1.3
1.4 0.92647 0.92785 0.92922
1.4
0.93056 0.93189
1.5 0.93943 0.94062 0.94179 0.94295 0.94408 1.5
1.6 0.95053 0.95154 0.95254 0.95352
1.6
0.95448
0.95994
1.7
0.96080 0.96164
1.7
0.96246 0.96327
1.8
1.8
0.96784 0.96856 0.96926
0.97062
0.96995
1.9
0.97441
0.97615 0.97670
1.9
0.97500 0.97558
2.0 0.97982 0.98030
0.98124
0.98077
0.98169 2.0
2.1 0.98422 0.98461 0.98500 0.98537 0.98574 2.1
2.2 0.98778 0.98809 0.98840 0.98870 0.98899 2.2
2.3 0.99061 0.99086 0.99111 0.99134 0.99158 2.3
2.4 0.99286 0.99305 0.99324 0.99343 0.99361 2.4
2.5 0.99461 0.99477 0.99492 0.99506 0.99520 2.5
2.6 0.99598 0.99609 0.99621 0.99632 0.99643 2.6
2.7 0.99702 0.99711 0.99720 0.99728
2.7
0.99736
2.8
0.99781
0.99795
0.99788
0.99807
0.99801
2.8
2.9 0.99841 0.99846 0.99851 0.99856 0.99861 2.9
3.0 0.99886 0.99889 0.99893 0.99897 0.99900 3.0
3.1 0.99918 0.99921 0.99924 0.99926 0.99929 3.1
3.2 0.99942 0.99944 0.99946 0.99948 0.99950 3.2
3.3 0.99960 0.99961 0.99962 0.99964 0.99965 3.3
3.4 0.99972 0.99973 0.99974 0.99975 0.99976 3.4
3.5 0.99981 0.99981 0.99982 0.99983 0.99983 3.5
3.6 0.99987 0.99987 0.99988 0.99988 0.99989 3.6
3.7 0.99991 0.99992 0.99992 0.99992 0.99992 3.7
3.8 0.99994 0.99994
3.8
0.99995 0.99995 0.99995
3.9 0.99996 0.99996 0.99996 0.99997 0.99997 3.9
Transcribed Image Text:Cumulative Standard Normal Distribution $(z)= [ 2.0 2.1 ساس 1 √2π 3.6 3.7 3.8 3.9 du Z 0.00 0.01 0.02 0.03 0.04 0.51595 0.55567 0.2 0.3 0.4 0.5 0.79389 0.79673 1.1 1.2 1.3 1.7 0.95543 1.8 0.96407 0.96485 0.0 0.50000 0.50399 0.50798 0.51197 0.1 0.53983 0.54379 0.54776 0.55172 0.57926 0.58317 0.58706 0.59095 0.59483 0.61791 0.62172 0.62551 0.62930 0.63307 0.65542 0.65910 0.62276 0.66640 0.67003 0.69146 0.69497 0.69847 0.70194 0.70540 0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.7 0.75803 0.76115 0.76424 0.76730 0.77035 0.8 0.78814 0.79103 0.79954 0.9 0.81594 0.81859 0.82121 0.82381 0.82639 1.0 0.84134 0.84375 0.84613 0.84849 0.85083 0.86433 0.86650 0.86864 0.87076 0.87285 0.88493 0.88686 0.88877 0.89065 0.89251 0.90320 0.90490 0.90658 0.90824 0.90988 1.4 0.91924 0.92073 0.92219 0.92364 0.92506 1.5 0.93319 0.93448 0.93574 0.93699 0.93822 1.6 0.94520 0.94630 0.94738 0.94845 0.94950 0.95637 0.95728 0.95818 0.95907 0.96637 0.96562 0.96711 0.97320 0.97381 0.97725 0.97778 0.97831 0.97882 0.97932 0.98214 0.98257 0.98300 0.98341 0.98382 0.98610 0.98645 0.98679 0.98713 0.98745 2.3 0.98928 0.98956 0.98983 0.99010 0.99036 2.4 0.99180 0.99202 0.99224 0.99245 0.99266 0.99413 0.99430 0.99379 0.99396 0.99446 2.5 0.99573 0.99585 0.99560 0.99534 0.99547 2.7 0.99653 0.99664 0.99674 0.99683 0.99693 2.8 0.99744 0.99752 0.99760 0.99767 0.99774 2.9 0.99813 0.99819 0.99825 0.99831 0.99836 3.0 0.99865 0.99869 0.99874 0.99878 0.99882 3.1 0.99903 0.99906 0.99910 0.99913 0.99916 3.2 0.99931 0.99934 0.99936 0.99938 0.99940 3.3 0.99952 0.99953 0.99955 0.99957 0.99958 3.4 0.99966 0.99968 0.99970 0.99969 0.99971 0.99980 0.99977 0.99978 0.99978 0.99979 0.99984 0.99985 0.99985 0.99986 0.99986 0.99989 0.99990 0.97128 0.97193 0.97257 2.2 2.6 3.5 0.99990 0.99990 0.99991 0.99993 0.99993 0.99993 0.99994 0.99994 0.99995 0.99995 0.99996 0.99996 0.99996 0 2 ■ APPENDIX II Cumulative Standard Normal Distribution (continued) (z)=L √√2n du z 0.05 0.06 Z 0.07 0.08 0.09 0.0 0.51994 0.52392 0.52790 0.53188 0.53586 0.0 0.1 0.55962 0.56356 0.56749 0.57142 0.57534 0.1 0.2 0.59871 0.60257 0.60642 0.61409 0.61026 0.2 0.3 0.64431 0.64803 0.63683 0.65173 0.64058 0.3 0.4 0.67364 0.67724 0.68082 0.68438 0.68793 0.4 0.5 0.70884 0.71226 0.71566 0.71904 0.72240 0.5 0.6 0.74215 0.74537 0.74857 0.75175 0.6 0.75490 0.77337 0.77637 0.7 0.77935 0.78230 0.78523 0.7 0.8 0.80510 0.80234 0.80785 0.81327 0.81057 0.8 0.9 0.83147 0.82894 0.83397 0.83891 0.83646 0.9 1.0 0.86214 1.0 0.85314 0.85543 0.85769 0.85993 1.1 0.87900 0.88100 0.88297 1.1 0.87493 0.87697 1.2 1.2 0.89616 0.89435 0.89796 0.89973 0.90147 1.3 0.91308 0.91149 0.91465 0.91773 0.91621 1.3 1.4 0.92647 0.92785 0.92922 1.4 0.93056 0.93189 1.5 0.93943 0.94062 0.94179 0.94295 0.94408 1.5 1.6 0.95053 0.95154 0.95254 0.95352 1.6 0.95448 0.95994 1.7 0.96080 0.96164 1.7 0.96246 0.96327 1.8 1.8 0.96784 0.96856 0.96926 0.97062 0.96995 1.9 0.97441 0.97615 0.97670 1.9 0.97500 0.97558 2.0 0.97982 0.98030 0.98124 0.98077 0.98169 2.0 2.1 0.98422 0.98461 0.98500 0.98537 0.98574 2.1 2.2 0.98778 0.98809 0.98840 0.98870 0.98899 2.2 2.3 0.99061 0.99086 0.99111 0.99134 0.99158 2.3 2.4 0.99286 0.99305 0.99324 0.99343 0.99361 2.4 2.5 0.99461 0.99477 0.99492 0.99506 0.99520 2.5 2.6 0.99598 0.99609 0.99621 0.99632 0.99643 2.6 2.7 0.99702 0.99711 0.99720 0.99728 2.7 0.99736 2.8 0.99781 0.99795 0.99788 0.99807 0.99801 2.8 2.9 0.99841 0.99846 0.99851 0.99856 0.99861 2.9 3.0 0.99886 0.99889 0.99893 0.99897 0.99900 3.0 3.1 0.99918 0.99921 0.99924 0.99926 0.99929 3.1 3.2 0.99942 0.99944 0.99946 0.99948 0.99950 3.2 3.3 0.99960 0.99961 0.99962 0.99964 0.99965 3.3 3.4 0.99972 0.99973 0.99974 0.99975 0.99976 3.4 3.5 0.99981 0.99981 0.99982 0.99983 0.99983 3.5 3.6 0.99987 0.99987 0.99988 0.99988 0.99989 3.6 3.7 0.99991 0.99992 0.99992 0.99992 0.99992 3.7 3.8 0.99994 0.99994 3.8 0.99995 0.99995 0.99995 3.9 0.99996 0.99996 0.99996 0.99997 0.99997 3.9
Ive,
(b) Between 30 and 40 chips are defective
2B The number of flaws in bolts of cloth in textile
manufacturing is assumed to be Poisson distributed with a
mean of 0.2 flaw per square meter. (Write your answers,
do not try to compute or simplify the result)
(a) What is the probability that there is one flaw in one
square meter of cloth?
(b) What is the probability that there is one flaw in 20
square meters of cloth?
(c) What is the probability that there are no flaws in 10
square meters of cloth?
(d) What is the probability that there are at least two flaws
in 20 square meters of cloth?
re placed in a functional test
Transcribed Image Text:Ive, (b) Between 30 and 40 chips are defective 2B The number of flaws in bolts of cloth in textile manufacturing is assumed to be Poisson distributed with a mean of 0.2 flaw per square meter. (Write your answers, do not try to compute or simplify the result) (a) What is the probability that there is one flaw in one square meter of cloth? (b) What is the probability that there is one flaw in 20 square meters of cloth? (c) What is the probability that there are no flaws in 10 square meters of cloth? (d) What is the probability that there are at least two flaws in 20 square meters of cloth? re placed in a functional test
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman