(b) Ammonia oxidizing bacteria (AOB) play an important role in nitrogen cycle. They are also utilized in engineered systems to remove ammonia in wastewater treatment. They obtain energy by oxidizing ammonia NH; into nitrite (NO2) and reducing oxygen to water. Balance the reduction and oxidation reactions driven by AOB. (c) Combine the redox reactions into a single reaction. (d) Find AG° for the combined reaction.
(b) Ammonia oxidizing bacteria (AOB) play an important role in nitrogen cycle. They are also utilized in engineered systems to remove ammonia in wastewater treatment. They obtain energy by oxidizing ammonia NH; into nitrite (NO2) and reducing oxygen to water. Balance the reduction and oxidation reactions driven by AOB. (c) Combine the redox reactions into a single reaction. (d) Find AG° for the combined reaction.
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
![(b) Ammonia oxidizing bacteria (AOB) play an important role in nitrogen cycle. They are also utilized in engineered
systems to remove ammonia in wastewater treatment. They obtain energy by oxidizing ammonia NH3 into nitrite (NO2)
and reducing oxygen to water. Balance the reduction and oxidation reactions driven by AOB.
(c) Combine the redox reactions into a single reaction.
(d) Find AG° for the combined reaction.
(e) Find AG for the given conditions: [NH3] = 2.7 × 10³ M; po2 = 0.21 atm; [NO2]= 1.2 × 10³ M. If necessary assume
neutral pH (i.e., pH = 7). Are the given conditions favourable for AOB growth?](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F502c5ec3-0180-498f-99b0-9ccce66f6ba0%2F16b5cd04-6402-4f58-94c7-f3f53152dac6%2F3vmbaoj_processed.png&w=3840&q=75)
Transcribed Image Text:(b) Ammonia oxidizing bacteria (AOB) play an important role in nitrogen cycle. They are also utilized in engineered
systems to remove ammonia in wastewater treatment. They obtain energy by oxidizing ammonia NH3 into nitrite (NO2)
and reducing oxygen to water. Balance the reduction and oxidation reactions driven by AOB.
(c) Combine the redox reactions into a single reaction.
(d) Find AG° for the combined reaction.
(e) Find AG for the given conditions: [NH3] = 2.7 × 10³ M; po2 = 0.21 atm; [NO2]= 1.2 × 10³ M. If necessary assume
neutral pH (i.e., pH = 7). Are the given conditions favourable for AOB growth?
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Organic Chemistry](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
![Chemistry: Principles and Reactions](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
![Elementary Principles of Chemical Processes, Bind…](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY