axy' + bxy' +cy = 0 characteristic equation is, ar + (6- a)r +e= 0 case I: two different real roots → y=C,x* +C,x* case II : two equal real roots →y-C,x +Cx* Inx case III : two conjugate complex roots → yC, cos(Blnx)+C, sin(Bln x)) 4xy+17y 0 is given. 1- the solution of the given cauch-euler diff.equation is I+y-C,x' +C,x? II →y-C,r" +C,r² Inx II → yC, cos(In x)+C, sin(In x) IV → y"(C, cos(21n x)+C, sin(21n x) V →y*C, cos(2x) +C, sin(2x)) OA) IV OB) I OC) V OD) II OE) II

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question

1-

ar'y'+ bxy' +cy = 0→ characteristic equation is,
ar + (6- a)r +e = 0
case I: two different real roots → y=C,x* +C,x*
case II : two equal real roots →y-C,x +C,r* Inx
case III : two conjugate complex roots → y=C, cos(ßlnx)+C, sin(Bln x))
4xy+17y 0 is given.
1-
the solution of the given cauch-euler diff.equation is
I→y-C,x' +C,x?
II →y-C,r" +C,r² Inx
III → yC, cos(In x)+C, sin(In x))
IV →y"(C, cos(21n x)+C, sin(2ln x)
V →yx*C, cos(2x)+C, sin(2x))
OA) IV
OB) I
OC) V
OD) III
OE) II
Transcribed Image Text:ar'y'+ bxy' +cy = 0→ characteristic equation is, ar + (6- a)r +e = 0 case I: two different real roots → y=C,x* +C,x* case II : two equal real roots →y-C,x +C,r* Inx case III : two conjugate complex roots → y=C, cos(ßlnx)+C, sin(Bln x)) 4xy+17y 0 is given. 1- the solution of the given cauch-euler diff.equation is I→y-C,x' +C,x? II →y-C,r" +C,r² Inx III → yC, cos(In x)+C, sin(In x)) IV →y"(C, cos(21n x)+C, sin(2ln x) V →yx*C, cos(2x)+C, sin(2x)) OA) IV OB) I OC) V OD) III OE) II
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Discrete Probability Distributions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,