ax? + sin? Let a be a nonzero constant such that a + 34. Let f(x, y) and let L = lim(z.9) >(0,0) f(x, y). Which of the following 34x2 + y? statements is correct? ax? + sin? Türkçe: a sıfırdan farklı ve a + 34 olsun. Eğer f(x, y) lim(z,4) →(0,0) f(x, y) ise aşağıdaki cümlelerden ve L = 34x2 + y? hangisi doğrudur? O L does not exist because the limit as (x,y) goes to (0,0) along the x-axis is different from the one along the y-axis. (x-ekseni ve y- ekseni üzerinde limitler farklı olduğu için L yoktur.) O L=1 O L=a/34 O Lexists if a=35 because in this case the limit as (x,y) goes to (0,0) along x=0 is the same as the one along y3x. (Eğer a=35 ise limit vardır çünkü bu durumda x=0 ve y=x doğruları üzerinde limitler aynıdır.) O L does not exist because f is undefined at (0,0). (f fonksiyonu (0,0) noktasında tanımsız olduğu için L yoktur).
ax? + sin? Let a be a nonzero constant such that a + 34. Let f(x, y) and let L = lim(z.9) >(0,0) f(x, y). Which of the following 34x2 + y? statements is correct? ax? + sin? Türkçe: a sıfırdan farklı ve a + 34 olsun. Eğer f(x, y) lim(z,4) →(0,0) f(x, y) ise aşağıdaki cümlelerden ve L = 34x2 + y? hangisi doğrudur? O L does not exist because the limit as (x,y) goes to (0,0) along the x-axis is different from the one along the y-axis. (x-ekseni ve y- ekseni üzerinde limitler farklı olduğu için L yoktur.) O L=1 O L=a/34 O Lexists if a=35 because in this case the limit as (x,y) goes to (0,0) along x=0 is the same as the one along y3x. (Eğer a=35 ise limit vardır çünkü bu durumda x=0 ve y=x doğruları üzerinde limitler aynıdır.) O L does not exist because f is undefined at (0,0). (f fonksiyonu (0,0) noktasında tanımsız olduğu için L yoktur).
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![ax2 + sin? y
Let a be a nonzero constant such that a + 34. Let f(x, y)
and let L = lim(2.4) (0,0) f(x, y). Which of the following
34x2 + y?
statements is correct?
ax? + sin?
Türkçe: a sıfırdan farklı ve a + 34 olsun. Eğer f(x, y)
ve L = lim(r,9)→(0,0) f(x, y) ise aşağıdaki cümlelerden
34x2 + y?
hangisi doğrudur?
O L does not exist because the limit as (x,y) goes to (0,0) along the x-axis is different from the one along the y-axis. (x-ekseni ve y-
ekseni üzerinde limitler farklı olduğu için L yoktur.)
O L=1
O L=a/34
O L exists if a=35 because in this case the limit as (x,y) goes to (0,0) along x=0 is the same as the one along y=Dx. (Eğer a=35 ise limit
vardır çünkü bu durumda x=0 ve y=x doğruları üzerinde limitler aynıdır.)
O L does not exist because f is undefined at (0,0). (f fonksiyonu (0,0) noktasında tanımsız olduğu için L yoktur).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F7bac5818-6ad1-4b6a-a670-67b868e4be90%2F00f1531c-a5fb-4c25-b9a3-9ef4138ad727%2Frur99rh_processed.jpeg&w=3840&q=75)
Transcribed Image Text:ax2 + sin? y
Let a be a nonzero constant such that a + 34. Let f(x, y)
and let L = lim(2.4) (0,0) f(x, y). Which of the following
34x2 + y?
statements is correct?
ax? + sin?
Türkçe: a sıfırdan farklı ve a + 34 olsun. Eğer f(x, y)
ve L = lim(r,9)→(0,0) f(x, y) ise aşağıdaki cümlelerden
34x2 + y?
hangisi doğrudur?
O L does not exist because the limit as (x,y) goes to (0,0) along the x-axis is different from the one along the y-axis. (x-ekseni ve y-
ekseni üzerinde limitler farklı olduğu için L yoktur.)
O L=1
O L=a/34
O L exists if a=35 because in this case the limit as (x,y) goes to (0,0) along x=0 is the same as the one along y=Dx. (Eğer a=35 ise limit
vardır çünkü bu durumda x=0 ve y=x doğruları üzerinde limitler aynıdır.)
O L does not exist because f is undefined at (0,0). (f fonksiyonu (0,0) noktasında tanımsız olduğu için L yoktur).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)