ax? + sin? Let a be a nonzero constant such that a + 21. Let f(x, y) and let 21x? + y? lim(a,y)→(0,0) f(x, y). Which of the following statements is correct? ax? + sin? y Türkçe: a sıfırdan farklı ve a 21 olsun. Eğer f(x, y) ve 21x2 + y? L= lim(a,y) >(0,0) f(x, y) ise aşağıdaki cümlelerden hangisi doğrudur? O L does not exist because the limit as (x,y) goes to (0,0) along the x-axis is different from the one along the y-axis. (x-ekseni ve y-ekseni üzerinde limitler farklı olduğu için L yoktur.) O L exists if a=22 because in this case the limit as (x,y) goes to (0,0) along x=0 is the same as the one along y=x. (Eğer a=22 ise limit vardır çünkü bu durumda x=0 ve y=x doğruları üzerinde limitler aynıdır.) O L does not exist because f is undefined at (0,0). (f fonksiyonu (0,0) noktasında tanımsıZ olduğu için L yoktur). O L=a/21 O L=1
ax? + sin? Let a be a nonzero constant such that a + 21. Let f(x, y) and let 21x? + y? lim(a,y)→(0,0) f(x, y). Which of the following statements is correct? ax? + sin? y Türkçe: a sıfırdan farklı ve a 21 olsun. Eğer f(x, y) ve 21x2 + y? L= lim(a,y) >(0,0) f(x, y) ise aşağıdaki cümlelerden hangisi doğrudur? O L does not exist because the limit as (x,y) goes to (0,0) along the x-axis is different from the one along the y-axis. (x-ekseni ve y-ekseni üzerinde limitler farklı olduğu için L yoktur.) O L exists if a=22 because in this case the limit as (x,y) goes to (0,0) along x=0 is the same as the one along y=x. (Eğer a=22 ise limit vardır çünkü bu durumda x=0 ve y=x doğruları üzerinde limitler aynıdır.) O L does not exist because f is undefined at (0,0). (f fonksiyonu (0,0) noktasında tanımsıZ olduğu için L yoktur). O L=a/21 O L=1
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question

Transcribed Image Text:ax2 + sin?
Let a be a nonzero constant such that a 21. Let f(x, y)
and let
21a? + y?
lim(a,y)→(0,0) f(x, y). Which of the following statements is correct?
ax? + sin? y
Türkçe: a sıfırdan farklı ve a 21 olsun. Eğer f(x, y)
ve
21x2 + y?
L= lim(z,9)-(0,0) f(x, y) ise aşağıdaki cümlelerden hangisi doğrudur?
O L does not exist because the limit as (x,y) goes to (0,0) along the x-axis is different from
the one along the y-axis. (x-ekseni ve y-ekseni üzerinde limitler farklı olduğu için L
yoktur.)
O Lexists if a=22 because in this case the limit as (x,y) goes to (0,0) along x=0 is the same
as the one along y=x. (Eğer a=22 ise limit vardır çünkü bu durumda x=0 ve y=x
doğruları üzerinde limitler aynıdır.)
O L does not exist because f is undefined at (0,0). (f fonksiyonu (0,0) noktasında tanımsıZ
olduğu için L yoktur).
O L=a/21
O L=1
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

