(atoms) Number of Spheres Per Unit Cell: Volume of Spheres Per Unit Cell: π ³. Number of sphere per unit cell) xatoms Side Length in terms of r Volume of Unit Cell in Terms r Packing Efficiency (%) = V(spheres) -100% V(unit cell) Simple Cube 1 Tr³xl 3 는 Tr 3 }} 2r E l=2r 3 H 3 813 11 =8r²³² X100 BCC 2 FCC 74

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question
### Understanding Crystal Structures: Simple Cube, BCC, and FCC

#### 1. Number of Spheres per Unit Cell

- **Simple Cube**: 1 atom
- **BCC (Body-Centered Cubic)**: 2 atoms
- **FCC (Face-Centered Cubic)**: 4 atoms

#### 2. Volume of Spheres Per Unit Cell
The volume calculation formula for the spheres within a unit cell is:

\[ \frac{4}{3} \pi r^3 \times \text{Number of spheres per unit cell} \]

- **Simple Cube**: \(\frac{4}{3} \pi r^3 \times 1 = \frac{4}{3} \pi r^3\)
- **BCC**: \(\frac{4}{3} \pi r^3 \times 2 = \frac{8}{3} \pi r^3\)
- **FCC**: \(\frac{4}{3} \pi r^3 \times 4 = \frac{16}{3} \pi r^3\)

#### 3. Side Length in Terms of r (Radius)

- **Simple Cube**: \(2r\)
- **BCC**: \(\frac{4r}{\sqrt{3}}\)
- **FCC**: \(2\sqrt{2}r\)

#### 4. Volume of Unit Cell in Terms of r

- **Simple Cube**: \((2r)^3 = 8r^3\)
- **BCC**: \(\left(\frac{4r}{\sqrt{3}}\right)^3 = \frac{64r^3}{3\sqrt{3}}\)
- **FCC**: \( (2\sqrt{2}r)^3 = 16\sqrt{2}r^3 \)

#### 5. Packing Efficiency
Calculated as:

\[ \text{Packing Efficiency} (\%) = \frac{\text{Volume of spheres}}{\text{Volume of unit cell}} \times 100\]

- **Simple Cube**: \[ \frac{\frac{4}{3} \pi r^3}{8r^3} \times 100 = \frac{\pi}{6} \times 100 \approx 52.36\%\]
- **BCC**: \( \frac{\frac{8}{3} \pi
Transcribed Image Text:### Understanding Crystal Structures: Simple Cube, BCC, and FCC #### 1. Number of Spheres per Unit Cell - **Simple Cube**: 1 atom - **BCC (Body-Centered Cubic)**: 2 atoms - **FCC (Face-Centered Cubic)**: 4 atoms #### 2. Volume of Spheres Per Unit Cell The volume calculation formula for the spheres within a unit cell is: \[ \frac{4}{3} \pi r^3 \times \text{Number of spheres per unit cell} \] - **Simple Cube**: \(\frac{4}{3} \pi r^3 \times 1 = \frac{4}{3} \pi r^3\) - **BCC**: \(\frac{4}{3} \pi r^3 \times 2 = \frac{8}{3} \pi r^3\) - **FCC**: \(\frac{4}{3} \pi r^3 \times 4 = \frac{16}{3} \pi r^3\) #### 3. Side Length in Terms of r (Radius) - **Simple Cube**: \(2r\) - **BCC**: \(\frac{4r}{\sqrt{3}}\) - **FCC**: \(2\sqrt{2}r\) #### 4. Volume of Unit Cell in Terms of r - **Simple Cube**: \((2r)^3 = 8r^3\) - **BCC**: \(\left(\frac{4r}{\sqrt{3}}\right)^3 = \frac{64r^3}{3\sqrt{3}}\) - **FCC**: \( (2\sqrt{2}r)^3 = 16\sqrt{2}r^3 \) #### 5. Packing Efficiency Calculated as: \[ \text{Packing Efficiency} (\%) = \frac{\text{Volume of spheres}}{\text{Volume of unit cell}} \times 100\] - **Simple Cube**: \[ \frac{\frac{4}{3} \pi r^3}{8r^3} \times 100 = \frac{\pi}{6} \times 100 \approx 52.36\%\] - **BCC**: \( \frac{\frac{8}{3} \pi
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Crystal Lattices and Unit Cells
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY