ater flowing at 0.1 kg/s through a thin-walled 50-mm diameter pipe is cooled from 400 K to 300 K. Calculate the required length of pipe if the outside coolant moving cross ways over the pipe is atmospheric air at 250 K moving at 20 m/s. Assume properties are: Water: (k = 0.668 W/m K, density = 974 kg/m^3, Pr = 2.29, v = 3.75*10^-7 m^2/s, C_p = 4195 J/kg K). Air: (k = 0.0263 W/m K, Pr = 0.707, v = 15.89*10^-6 m^2/s).

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter6: Forced Convection Over Exterior Surfaces
Section: Chapter Questions
Problem 6.15P
icon
Related questions
Question

Water flowing at 0.1 kg/s through a thin-walled 50-mm diameter pipe is cooled from 400 K to 300 K. Calculate the required length of pipe if the outside coolant moving cross ways over the pipe is atmospheric air at 250 K moving at 20 m/s.

Assume properties are:

Water: (k = 0.668 W/m K, density = 974 kg/m^3, Pr = 2.29, v = 3.75*10^-7 m^2/s, C_p = 4195 J/kg K).

Air: (k = 0.0263 W/m K, Pr = 0.707, v = 15.89*10^-6 m^2/s).

1. For the above problem the inside pipe heat transfer coefficient h_in=____ W/m^2 K.

a) 422

b) 451

c) 185

d) 493

e) 79

2. For the above problem the outside pipe heat transfer coefficient h_out=____W/m^2 K.

a) 126

b) 55

c) 238

d) 83

e) 326

Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning