At time zero a microbial population has a cell density of 100 cells/ml. After 12 hr the cell density is 140 cells/ml; after 24 hr it's 200 cells/ml; after 36 hr it's 280 cells/ml; after 48 hr it's 400 cells/ml. 1. Using the semi-log graph provided plot a growth kinetics curve using the data above. 2. What phase of growth is this microbial population in?_ 3. What is the generation (doubling time) of this microbial population?_ 4. Assuming the growth rate of these microbes is constant, what will the cell density of this population be after 72 hr?. After just 60 hr?
At time zero a microbial population has a cell density of 100 cells/ml. After 12 hr the cell density is 140 cells/ml; after 24 hr it's 200 cells/ml; after 36 hr it's 280 cells/ml; after 48 hr it's 400 cells/ml. 1. Using the semi-log graph provided plot a growth kinetics curve using the data above. 2. What phase of growth is this microbial population in?_ 3. What is the generation (doubling time) of this microbial population?_ 4. Assuming the growth rate of these microbes is constant, what will the cell density of this population be after 72 hr?. After just 60 hr?
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
I only need question 4,

Transcribed Image Text:At time zero a microbial population has a cell density of 100 cells/ml. After 12 hr the cell density
is 140 cells/ml; after 24 hr it's 200 cells/ml; after 36 hr it's 280 cells/ml; after 48 hr it's 400
cells/ml.
1. Using the semi-log graph provided plot a growth kinetics curve using the data above.
2. What phase of growth is this microbial population in?_
3. What is the generation (doubling time) of this microbial population?_
4. Assuming the growth rate of these microbes is constant, what will the cell density of this
population be after 72 hr?.
After just 60 hr?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning

Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY