At time t (in minutes), an object's distance (in meters) from a point is given by s(t) = cos(+1 (a) Find the average velocity of the object for 1 ≤ t ≤ 4 minutes. Give an exact answer. (b) How fast is the object traveling at t = 3 seconds? Give an exact answer. -- units -- O s'(3) = (c) Which of the following represents the mathematical definition of s'(3) ? O s'(3) = lim cos((t + h)² + 1) − cos(t² + 1) t-3 h lim ho units -- - cos((t + h)² + 1) − cos(t² + 1) +1) O s'(3) = lim cos(10 + h) - cos(10) ho h O s'(3) = lim_ cos((² + h + 1) − cos(10) t-3 h O s'(3) = lim cos((3 + h)² + 1) − cos(10) - h→0 h

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
At time t (in minutes), an object's distance (in meters) from a point is given by s(t) = cos(t² + 1).
(a) Find the average velocity of the object for 1 ≤ t ≤ 4 minutes. Give an exact answer.
units --
(b) How fast is the object traveling at t = 3 seconds? Give an exact answer.
units --
(c) Which of the following represents the mathematical definition of s'(3) ?
O s'(3) = lim cos((t + h)² + 1) − cos(t² + 1)
-
t-3
h
O s'(3) = lim cos(10 + h)
ho
h
O s'(3) = lim_ cos((t + h)² + 1) − cos(t² + 1)
h→0
h
cos(10)
Os'(3) = lim cos((t² + h + 1) − cos(10)
t-3
h
O s'(3) = lim_ cos((3 + h)² + 1) − cos(10)
h→0
h
Transcribed Image Text:At time t (in minutes), an object's distance (in meters) from a point is given by s(t) = cos(t² + 1). (a) Find the average velocity of the object for 1 ≤ t ≤ 4 minutes. Give an exact answer. units -- (b) How fast is the object traveling at t = 3 seconds? Give an exact answer. units -- (c) Which of the following represents the mathematical definition of s'(3) ? O s'(3) = lim cos((t + h)² + 1) − cos(t² + 1) - t-3 h O s'(3) = lim cos(10 + h) ho h O s'(3) = lim_ cos((t + h)² + 1) − cos(t² + 1) h→0 h cos(10) Os'(3) = lim cos((t² + h + 1) − cos(10) t-3 h O s'(3) = lim_ cos((3 + h)² + 1) − cos(10) h→0 h
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning