Exercise 1. Use the Maclaurin series of tan-¹(u) tan ¹ (u) =U- to approximate the definite integral with an error of no more than 0.0000001. u³ U² + 3 5 u⁹ + 7 9 7 U 0.1 [0.3+ tan ¹(x²) dx U 11
Exercise 1. Use the Maclaurin series of tan-¹(u) tan ¹ (u) =U- to approximate the definite integral with an error of no more than 0.0000001. u³ U² + 3 5 u⁹ + 7 9 7 U 0.1 [0.3+ tan ¹(x²) dx U 11
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Exercise 1.** Use the Maclaurin series of \(\tan^{-1}(u)\)
\[
\tan^{-1}(u) = u - \frac{u^3}{3} + \frac{u^5}{5} - \frac{u^7}{7} + \frac{u^9}{9} - \frac{u^{11}}{11} + \cdots
\]
to approximate the definite integral
\[
\int_{0}^{0.1} \tan^{-1}(x^2) \, dx
\]
with an error of no more than 0.0000001.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F17550e59-88eb-47cf-858a-9b53c1fd9657%2F213a6cd8-9405-43ee-b9fa-72171236a02a%2Fprx62k9_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Exercise 1.** Use the Maclaurin series of \(\tan^{-1}(u)\)
\[
\tan^{-1}(u) = u - \frac{u^3}{3} + \frac{u^5}{5} - \frac{u^7}{7} + \frac{u^9}{9} - \frac{u^{11}}{11} + \cdots
\]
to approximate the definite integral
\[
\int_{0}^{0.1} \tan^{-1}(x^2) \, dx
\]
with an error of no more than 0.0000001.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
At the end how did you solve the sum to get that result?
I see you replace the x with 0.1 in the last step and I understand that the rest becomes zero when solving th integral, but what did you replace n with to solve the sum?
Solution
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)